Nutrients, Vol. 17, Pages 3458: Potential Effects of Nicotinamide on Serum HDL-Cholesterol Levels and Hepatic Oxidative Stress, ABCA1 Gene and Protein Expression in Rats Fed a High-Fat/Fructose Diet

Nutrients, Vol. 17, Pages 3458: Potential Effects of Nicotinamide on Serum HDL-Cholesterol Levels and Hepatic Oxidative Stress, ABCA1 Gene and Protein Expression in Rats Fed a High-Fat/Fructose Diet

Nutrients doi: 10.3390/nu17213458

Authors:
Jesús I. Serafín-Fabián
Armando Ramírez-Cruz
J. D. Villeda-González
Jaime Gómez-Zamudio
Adrián Hernández-Díazcouder
Clara Ortega-Camarillo
Eugenia Flores-Alfaro
Miguel Cruz
Miguel Vazquez-Moreno

A hypercaloric diet is associated with oxidative stress and the dysfunction of ATP-Binding Cassette transporter A1 (ABCA1), a key element in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. Nicotinamide (NAM) presents antioxidant properties, which may contribute to maintaining lipid metabolism. Therefore, we aimed to evaluate the effect of NAM on HDL-cholesterol (HDL-C) level, oxidative stress markers, and the gene expression and protein levels of ABCA1 in Sprague-Dawley rats fed a hypercaloric diet. Forty male rats were divided into five groups: one group received a standard diet, and the remaining groups received a single high-fat, high-fructose diet (HFDF). Three of the HFDF groups received NAM treatment (5, 10, and 15 mM) in drinking water for 16 weeks (5 h/day). While HDL-C and oxidative stress were measured in serum samples, oxidative stress markers, and the gene expression and protein levels of ABCA1 were quantified in liver samples. The HDL-C level altered by the HFDF was improved by treatment with NAM. Furthermore, NAM reduces systemic lipid peroxidation levels and enhances the hepatic antioxidant response affected by the HFDF. In addition, NAM modulates the hepatic ABCA1 gene expression and protein level, altered by the HFDF. Our results suggest that NAM may modify the serum HDL-C level by an improvement of antioxidant response, and a possible modulation of the hepatic ABCA1 gene and protein expression. Further metabolic and molecular studies are needed to support the potential therapeutic role of NAM to prevent or treat lipid alterations promoted by a hypercaloric diet.

​A hypercaloric diet is associated with oxidative stress and the dysfunction of ATP-Binding Cassette transporter A1 (ABCA1), a key element in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. Nicotinamide (NAM) presents antioxidant properties, which may contribute to maintaining lipid metabolism. Therefore, we aimed to evaluate the effect of NAM on HDL-cholesterol (HDL-C) level, oxidative stress markers, and the gene expression and protein levels of ABCA1 in Sprague-Dawley rats fed a hypercaloric diet. Forty male rats were divided into five groups: one group received a standard diet, and the remaining groups received a single high-fat, high-fructose diet (HFDF). Three of the HFDF groups received NAM treatment (5, 10, and 15 mM) in drinking water for 16 weeks (5 h/day). While HDL-C and oxidative stress were measured in serum samples, oxidative stress markers, and the gene expression and protein levels of ABCA1 were quantified in liver samples. The HDL-C level altered by the HFDF was improved by treatment with NAM. Furthermore, NAM reduces systemic lipid peroxidation levels and enhances the hepatic antioxidant response affected by the HFDF. In addition, NAM modulates the hepatic ABCA1 gene expression and protein level, altered by the HFDF. Our results suggest that NAM may modify the serum HDL-C level by an improvement of antioxidant response, and a possible modulation of the hepatic ABCA1 gene and protein expression. Further metabolic and molecular studies are needed to support the potential therapeutic role of NAM to prevent or treat lipid alterations promoted by a hypercaloric diet. Read More

Full text for top nursing and allied health literature.

X