Nutrients, Vol. 17, Pages 3209: Artificial Intelligence in Endurance Sports: Metabolic, Recovery, and Nutritional Perspectives

Nutrients, Vol. 17, Pages 3209: Artificial Intelligence in Endurance Sports: Metabolic, Recovery, and Nutritional Perspectives

Nutrients doi: 10.3390/nu17203209

Authors:
Gerasimos V. Grivas
Kousar Safari

Background: Artificial Intelligence (AI) is increasingly applied in endurance sports to optimize performance, enhance recovery, and personalize nutrition and supplementation. This review synthesizes current knowledge on AI applications in endurance sports, emphasizing implications for metabolic health, nutritional strategies, and recovery optimization, while also addressing ethical considerations and future directions. Methods: A narrative review was conducted using targeted searches of PubMed, Scopus, and Web of Science with cross-referencing. Extracted items included sport/context, data sources, AI methods including machine learning (ML), validation type (internal vs. external/field), performance metrics, comparators, and key limitations to support a structured synthesis; no formal risk-of-bias assessment or meta-analysis was undertaken due to heterogeneity. Results: AI systems effectively integrate multimodal physiological, environmental, and behavioral data to enhance metabolic health monitoring, predict recovery states, and personalize nutrition. Continuous glucose monitoring combined with AI algorithms allows precise carbohydrate management during prolonged events, improving performance outcomes. AI-driven supplementation strategies, informed by genetic polymorphisms and individual metabolic responses, have demonstrated enhanced ergogenic effectiveness. However, significant challenges persist, including measurement validity and reliability of sensor-derived signals and overall dataset quality (e.g., noise, missingness, labeling error), model performance and generalizability, algorithmic transparency, and equitable access. Furthermore, limited generalizability due to homogenous training datasets restricts widespread applicability across diverse athletic populations. Conclusions: The integration of AI in endurance sports offers substantial promise for improving performance, recovery, and nutritional strategies through personalized approaches. Realizing this potential requires addressing existing limitations in model performance and generalizability, ethical transparency, and equitable accessibility. Future research should prioritize diverse, representative, multi-site data collection across sex/gender, age, and race/ethnicity. Coverage should include performance level (elite to recreational), sport discipline, environmental conditions (e.g., heat, altitude), and device platforms (multi-vendor/multi-sensor). Equally important are rigorous external and field validation, transparent and explainable deployment with appropriate governance, and equitable access to ensure scientifically robust, ethically sound, and practically relevant AI solutions.

​Background: Artificial Intelligence (AI) is increasingly applied in endurance sports to optimize performance, enhance recovery, and personalize nutrition and supplementation. This review synthesizes current knowledge on AI applications in endurance sports, emphasizing implications for metabolic health, nutritional strategies, and recovery optimization, while also addressing ethical considerations and future directions. Methods: A narrative review was conducted using targeted searches of PubMed, Scopus, and Web of Science with cross-referencing. Extracted items included sport/context, data sources, AI methods including machine learning (ML), validation type (internal vs. external/field), performance metrics, comparators, and key limitations to support a structured synthesis; no formal risk-of-bias assessment or meta-analysis was undertaken due to heterogeneity. Results: AI systems effectively integrate multimodal physiological, environmental, and behavioral data to enhance metabolic health monitoring, predict recovery states, and personalize nutrition. Continuous glucose monitoring combined with AI algorithms allows precise carbohydrate management during prolonged events, improving performance outcomes. AI-driven supplementation strategies, informed by genetic polymorphisms and individual metabolic responses, have demonstrated enhanced ergogenic effectiveness. However, significant challenges persist, including measurement validity and reliability of sensor-derived signals and overall dataset quality (e.g., noise, missingness, labeling error), model performance and generalizability, algorithmic transparency, and equitable access. Furthermore, limited generalizability due to homogenous training datasets restricts widespread applicability across diverse athletic populations. Conclusions: The integration of AI in endurance sports offers substantial promise for improving performance, recovery, and nutritional strategies through personalized approaches. Realizing this potential requires addressing existing limitations in model performance and generalizability, ethical transparency, and equitable accessibility. Future research should prioritize diverse, representative, multi-site data collection across sex/gender, age, and race/ethnicity. Coverage should include performance level (elite to recreational), sport discipline, environmental conditions (e.g., heat, altitude), and device platforms (multi-vendor/multi-sensor). Equally important are rigorous external and field validation, transparent and explainable deployment with appropriate governance, and equitable access to ensure scientifically robust, ethically sound, and practically relevant AI solutions. Read More

Full text for top nursing and allied health literature.

X