Nutrients, Vol. 17, Pages 3324: Antioxidant Capacity of Colostrum of Mothers with Gestational Diabetes Mellitus—A Cross-Sectional Study
Nutrients doi: 10.3390/nu17213324
Authors:
Paulina Gaweł
Karolina Karcz
Natalia Zaręba-Wdowiak
Barbara Królak-Olejnik
Background: Women with gestational diabetes mellitus (GDM) are vulnerable to oxidative stress, yet limited data exist on the antioxidant potential of their breast milk. This study aimed to evaluate the antioxidant capacity and basic composition of colostrum in women with GDM compared to healthy controls, focusing on total antioxidant capacity (TAC) and enzymatic antioxidants: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Methods: The study included 77 lactating mothers: 56 with gestational diabetes (15 managed with diet/exercise—GDM G1; 41 required insulin—GDM G2) and 21 healthy controls. Colostrum samples were collected on days 3–5 postpartum and analyzed for macronutrients and antioxidant enzymes. To enable comparisons across study groups and to explore associations with maternal characteristics, a range of statistical methods was applied. A taxonomic (classification) analysis was then performed using the predictors that best fit the data: study group membership, maternal hypothyroidism history (from the medical interview), and gestational weight gain. Results: TAC was significantly lower in the GDM G2 group compared to GDM G1 and controls (p = 0.001), with no differences in enzymatic antioxidants. The control group had the highest energy (p = 0.048) and dry matter content (p = 0.015), while protein, fat, and carbohydrate levels did not differ significantly. After dividing the study group into four clusters, based on maternal health factors, including GDM status and thyroid function, TAC levels differed significantly between clusters, with the highest values observed in Cluster 3 (healthy controls without thyroid dysfunction) and the lowest in Cluster 2 (GDM and hypothyroidism). Analysis of colostrum composition revealed significant differences in energy content (p = 0.047) and dry matter concentration (p = 0.011), while no significant differences were found in other macronutrients. Conclusions: Our findings suggest that maternal metabolic and endocrine conditions, such as GDM and thyroid dysfunction, may differentially influence the nutritional and functional properties of colostrum—particularly its antioxidant potential.
Background: Women with gestational diabetes mellitus (GDM) are vulnerable to oxidative stress, yet limited data exist on the antioxidant potential of their breast milk. This study aimed to evaluate the antioxidant capacity and basic composition of colostrum in women with GDM compared to healthy controls, focusing on total antioxidant capacity (TAC) and enzymatic antioxidants: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Methods: The study included 77 lactating mothers: 56 with gestational diabetes (15 managed with diet/exercise—GDM G1; 41 required insulin—GDM G2) and 21 healthy controls. Colostrum samples were collected on days 3–5 postpartum and analyzed for macronutrients and antioxidant enzymes. To enable comparisons across study groups and to explore associations with maternal characteristics, a range of statistical methods was applied. A taxonomic (classification) analysis was then performed using the predictors that best fit the data: study group membership, maternal hypothyroidism history (from the medical interview), and gestational weight gain. Results: TAC was significantly lower in the GDM G2 group compared to GDM G1 and controls (p = 0.001), with no differences in enzymatic antioxidants. The control group had the highest energy (p = 0.048) and dry matter content (p = 0.015), while protein, fat, and carbohydrate levels did not differ significantly. After dividing the study group into four clusters, based on maternal health factors, including GDM status and thyroid function, TAC levels differed significantly between clusters, with the highest values observed in Cluster 3 (healthy controls without thyroid dysfunction) and the lowest in Cluster 2 (GDM and hypothyroidism). Analysis of colostrum composition revealed significant differences in energy content (p = 0.047) and dry matter concentration (p = 0.011), while no significant differences were found in other macronutrients. Conclusions: Our findings suggest that maternal metabolic and endocrine conditions, such as GDM and thyroid dysfunction, may differentially influence the nutritional and functional properties of colostrum—particularly its antioxidant potential. Read More
