Nutrients, Vol. 17, Pages 3555: Lactiplantibacillus plantarum Lp20 Alleviates High Fat Diet-Induced Obesity in Mice via Its Bile Salt Hydrolase Activity

Nutrients, Vol. 17, Pages 3555: Lactiplantibacillus plantarum Lp20 Alleviates High Fat Diet-Induced Obesity in Mice via Its Bile Salt Hydrolase Activity

Nutrients doi: 10.3390/nu17223555

Authors:
Xiaoyue Bai
Fangzhou Lu
Yizhi Jing
Hui Wang
Haidong Qian
Ming Zhang
Zhengyuan Zhai
Yanling Hao

Background: Obesity is a highly prevalent chronic disease characterized by excessive weight gain and fat accumulation. There is growing evidence that Lactiplantibacillus plantarum strains with bile salt hydrolase (BSH) activity are effective in preventing and alleviating obesity. Methods: Initially, we screened bacterial strains with high hydrolytic activity against glycochenodeoxycholic acid (GDCA), and constructed an isogenic bsh1 knockout mutant. Subsequently, male C57BL/6J mice fed a high-fat diet (HFD) were randomly assigned to receive daily gavage of either the wild-type Lp20 (Lp20-WT) or the bsh1-deficient mutant (Lp20-Δbsh1) for 8 weeks. Serum cholesterol levels and histopathological changes in liver sections were monitored. Hepatic gene expression was quantified by RT-qPCR, and fecal bacterial communities were analyzed via 16S rRNA gene sequencing. These comprehensive assessments aimed to evaluate metabolic improvements and uncover the potential mechanisms behind the observed effects. Results:L. plantarum Lp20 hydrolyzed 91.62% of GDCA, exhibiting the highest bile-salt hydrolase (BSH) activity among tested isolates. Whole-genome sequencing and in-silico analyses mapped this activity to bsh1; gene deletion of bsh1 confirmed the role of bsh1 in GDCA hydrolysis. Daily gavage of the wild-type strain (Lp20-WT) to diet-induced obese mice markedly attenuated weight gain, reduced inguinal white adipose tissue and mesenteric fat mass, and lowered serum TC and LDL-C by 20.8% and 33.3%, respectively, while decreasing ALT and AST levels and reversing hepatic steatosis. In contrast, the bsh1-null mutant (Lp20-Δbsh1) failed to elicit any measurable metabolic benefit. Mechanistically, Lp20-WT upregulated rate-limiting bile-acid synthetic enzymes CYP7A1 and CYP27A1, thereby accelerating the catabolism of cholesterol into bile acids. Concurrently, it activated hepatic TGR5 and FXR signaling axes to modulate hepatic metabolism. Moreover, Lp20-WT restructured the gut microbiota by notably enhancing the abundance of beneficial bacteria such as norank_f__Muribaculaceae, Akkermansia, and Alistipes, while reducing the abundance of potentially harmful taxa, including norank_f__Desulfovibrionaceae, Dubosiella, and Mucispirillum. Conclusions: This study provides direct evidence of BSH’s anti-obesity effects through gene deletion. Specifically, BSH lowers cholesterol by modulating hepatic bile-acid metabolism-related gene expression and altering the gut microbiota composition. However, the study is limited by a small sample size (n = 6), the use of male mice only, and its preclinical stage, indicating a need for further validation across diverse strains and human populations.

​Background: Obesity is a highly prevalent chronic disease characterized by excessive weight gain and fat accumulation. There is growing evidence that Lactiplantibacillus plantarum strains with bile salt hydrolase (BSH) activity are effective in preventing and alleviating obesity. Methods: Initially, we screened bacterial strains with high hydrolytic activity against glycochenodeoxycholic acid (GDCA), and constructed an isogenic bsh1 knockout mutant. Subsequently, male C57BL/6J mice fed a high-fat diet (HFD) were randomly assigned to receive daily gavage of either the wild-type Lp20 (Lp20-WT) or the bsh1-deficient mutant (Lp20-Δbsh1) for 8 weeks. Serum cholesterol levels and histopathological changes in liver sections were monitored. Hepatic gene expression was quantified by RT-qPCR, and fecal bacterial communities were analyzed via 16S rRNA gene sequencing. These comprehensive assessments aimed to evaluate metabolic improvements and uncover the potential mechanisms behind the observed effects. Results:L. plantarum Lp20 hydrolyzed 91.62% of GDCA, exhibiting the highest bile-salt hydrolase (BSH) activity among tested isolates. Whole-genome sequencing and in-silico analyses mapped this activity to bsh1; gene deletion of bsh1 confirmed the role of bsh1 in GDCA hydrolysis. Daily gavage of the wild-type strain (Lp20-WT) to diet-induced obese mice markedly attenuated weight gain, reduced inguinal white adipose tissue and mesenteric fat mass, and lowered serum TC and LDL-C by 20.8% and 33.3%, respectively, while decreasing ALT and AST levels and reversing hepatic steatosis. In contrast, the bsh1-null mutant (Lp20-Δbsh1) failed to elicit any measurable metabolic benefit. Mechanistically, Lp20-WT upregulated rate-limiting bile-acid synthetic enzymes CYP7A1 and CYP27A1, thereby accelerating the catabolism of cholesterol into bile acids. Concurrently, it activated hepatic TGR5 and FXR signaling axes to modulate hepatic metabolism. Moreover, Lp20-WT restructured the gut microbiota by notably enhancing the abundance of beneficial bacteria such as norank_f__Muribaculaceae, Akkermansia, and Alistipes, while reducing the abundance of potentially harmful taxa, including norank_f__Desulfovibrionaceae, Dubosiella, and Mucispirillum. Conclusions: This study provides direct evidence of BSH’s anti-obesity effects through gene deletion. Specifically, BSH lowers cholesterol by modulating hepatic bile-acid metabolism-related gene expression and altering the gut microbiota composition. However, the study is limited by a small sample size (n = 6), the use of male mice only, and its preclinical stage, indicating a need for further validation across diverse strains and human populations. Read More

Full text for top nursing and allied health literature.

X