Nutrients, Vol. 17, Pages 3947: The Olive Phenolic S-(-)-Oleocanthal as a Novel Intervention for Neuroendocrine Prostate Cancers: Therapeutic and Molecular Insights

Nutrients, Vol. 17, Pages 3947: The Olive Phenolic S-(-)-Oleocanthal as a Novel Intervention for Neuroendocrine Prostate Cancers: Therapeutic and Molecular Insights

Nutrients doi: 10.3390/nu17243947

Authors:
Md Towhidul Islam Tarun
Hassan Y. Ebrahim
Dalal Dawud
Zakaria Y. Abd Elmageed
Eva Corey
Khalid A. El El Sayed

Background/Objectives. Prostate cancer (PCa) is among the leading causes of death from cancer in men. Frequent use of androgen receptor inhibitors induces PCa transdifferentiation, leading to poorly differentiated neuroendocrine PCa (NEPC). ROR2 is critical for NEPC pathogenesis by activating ASCL1, promoting lineage plasticity. Protein lysine methylation mediated by N-lysine methyltransferases SMYD2 and its downstream effector EZH2 upregulates the NEPC marker ASCL1 and enhances c-MET signaling, promoting PCa aggression. Epidemiological studies suggest a lower incidence of certain malignancies in Mediterranean populations due to their intake of an olive-phenolics-rich diet. Methods. Cell viability, gene knockdown, and immunoblotting were used for in vitro analyses. A nude mouse NEPC xenograft model evaluated the anti-tumor efficacy of purified and crude oleocanthal. Xenograft tumors were subjected to RNA-seq, qPCR, and Western blot analyses, with clinical validation performed using tissue microarrays. Results. A tissue microarray analysis showed that SMYD2 expression was significantly elevated in PCa tissues with higher IHS versus normal prostate tissue cores. The olive phenolic S-(-)-oleocanthal (OC) suppressed the de novo NEPC NCI-H660 cells proliferation. Male athymic nude mice xenografted with the NCI-H660-Luc cells were used to assess OC effects on de novo NEPC progression and recurrence. Male NSG mice transplanted with LuCaP 93 PDX tumor tissues generated a heterogeneous in vivo model used to assess OC effects against t-NEPC progression. Daily oral 10 mg/kg OC administration significantly suppressed the NCI-H660-Luc tumor progression and locoregional recurrence after primary tumor surgical excision. OC treatments effectively suppressed the progression of LuCaP 93 PDX tumors. OC-treated tumors revealed downregulation of ROR2, ASCL1, SMYD2, and EZH2, as well as activated c-MET levels versus the placebo control. RNA sequencing of the collected treated NEPC tumors showed that OC disrupted NEPC splicing, translation, growth factor signaling, and neuronal differentiation. Conclusions. This study’s findings validate OC as a novel lead entity for NEPC management by targeting the ROR2-ASCL1-SMYD2-EZH2-c-MET axis.

​Background/Objectives. Prostate cancer (PCa) is among the leading causes of death from cancer in men. Frequent use of androgen receptor inhibitors induces PCa transdifferentiation, leading to poorly differentiated neuroendocrine PCa (NEPC). ROR2 is critical for NEPC pathogenesis by activating ASCL1, promoting lineage plasticity. Protein lysine methylation mediated by N-lysine methyltransferases SMYD2 and its downstream effector EZH2 upregulates the NEPC marker ASCL1 and enhances c-MET signaling, promoting PCa aggression. Epidemiological studies suggest a lower incidence of certain malignancies in Mediterranean populations due to their intake of an olive-phenolics-rich diet. Methods. Cell viability, gene knockdown, and immunoblotting were used for in vitro analyses. A nude mouse NEPC xenograft model evaluated the anti-tumor efficacy of purified and crude oleocanthal. Xenograft tumors were subjected to RNA-seq, qPCR, and Western blot analyses, with clinical validation performed using tissue microarrays. Results. A tissue microarray analysis showed that SMYD2 expression was significantly elevated in PCa tissues with higher IHS versus normal prostate tissue cores. The olive phenolic S-(-)-oleocanthal (OC) suppressed the de novo NEPC NCI-H660 cells proliferation. Male athymic nude mice xenografted with the NCI-H660-Luc cells were used to assess OC effects on de novo NEPC progression and recurrence. Male NSG mice transplanted with LuCaP 93 PDX tumor tissues generated a heterogeneous in vivo model used to assess OC effects against t-NEPC progression. Daily oral 10 mg/kg OC administration significantly suppressed the NCI-H660-Luc tumor progression and locoregional recurrence after primary tumor surgical excision. OC treatments effectively suppressed the progression of LuCaP 93 PDX tumors. OC-treated tumors revealed downregulation of ROR2, ASCL1, SMYD2, and EZH2, as well as activated c-MET levels versus the placebo control. RNA sequencing of the collected treated NEPC tumors showed that OC disrupted NEPC splicing, translation, growth factor signaling, and neuronal differentiation. Conclusions. This study’s findings validate OC as a novel lead entity for NEPC management by targeting the ROR2-ASCL1-SMYD2-EZH2-c-MET axis. Read More

Full text for top nursing and allied health literature.

X