Nutrients, Vol. 18, Pages 18: Exploring the Neuroprotective Properties of Capsanthin: Antioxidant Defense and Inflammatory Responses

Nutrients, Vol. 18, Pages 18: Exploring the Neuroprotective Properties of Capsanthin: Antioxidant Defense and Inflammatory Responses

Nutrients doi: 10.3390/nu18010018

Authors:
Ramóna Pap
Edina Pandur
Gergely Jánosa
Adrienn Horváth
Kitti Tamási
Katalin Sipos
Attila Agócs
József Deli

Background/Objectives: Capsanthin is a xanthophyll carotenoid from Capsicum species with an extended conjugated polyene chain that underlies both its orange–red color and strong antioxidant potential. In this study, we investigated whether capsanthin protects RA-differentiated SH-SY5Y neuron-like cells against glutamate-induced stress. Methods: Neuronal dysfunction was induced by glutamate exposure, and capsanthin treatment was evaluated using cell viability, reactive oxygen species (ROS) production, antioxidant defense markers, inflammatory cytokines, mitochondrial energy status, and apoptosis-related endpoints. Antioxidant responses were assessed using superoxide dismutase, catalase, glutathione peroxidase activities, and total antioxidant capacity. Cytokine release (TNFα, IL-6, IL-8, IL-4, IL-10) was quantified by ELISA. Mitochondrial function was monitored using ATP content. Apoptosis-associated genes (BAX, BCL-2, CASP3, and CASP9) were analyzed using SYBR Green-based RT-qPCR, complemented by caspase-9 ELISA and caspase-3 Western blotting. Results: Glutamate increased oxidative stress and shifted the cytokine profile toward a pro-inflammatory state, accompanied by reduced ATP levels and a pro-apoptotic transcriptional pattern. Capsanthin significantly attenuated glutamate-induced ROS production, stabilized antioxidant enzyme activities and total antioxidant capacity, reduced pro-inflammatory cytokines while supporting anti-inflammatory signaling, and preserved ATP levels. Conclusions: Overall, capsanthin mitigated excitotoxic stress by maintaining redox balance, limiting inflammatory responses, and protecting mitochondrial energy metabolism in neuron-like cells, supporting its potential as a neuroprotective candidate for glutamate-induced neuronal stress.

​Background/Objectives: Capsanthin is a xanthophyll carotenoid from Capsicum species with an extended conjugated polyene chain that underlies both its orange–red color and strong antioxidant potential. In this study, we investigated whether capsanthin protects RA-differentiated SH-SY5Y neuron-like cells against glutamate-induced stress. Methods: Neuronal dysfunction was induced by glutamate exposure, and capsanthin treatment was evaluated using cell viability, reactive oxygen species (ROS) production, antioxidant defense markers, inflammatory cytokines, mitochondrial energy status, and apoptosis-related endpoints. Antioxidant responses were assessed using superoxide dismutase, catalase, glutathione peroxidase activities, and total antioxidant capacity. Cytokine release (TNFα, IL-6, IL-8, IL-4, IL-10) was quantified by ELISA. Mitochondrial function was monitored using ATP content. Apoptosis-associated genes (BAX, BCL-2, CASP3, and CASP9) were analyzed using SYBR Green-based RT-qPCR, complemented by caspase-9 ELISA and caspase-3 Western blotting. Results: Glutamate increased oxidative stress and shifted the cytokine profile toward a pro-inflammatory state, accompanied by reduced ATP levels and a pro-apoptotic transcriptional pattern. Capsanthin significantly attenuated glutamate-induced ROS production, stabilized antioxidant enzyme activities and total antioxidant capacity, reduced pro-inflammatory cytokines while supporting anti-inflammatory signaling, and preserved ATP levels. Conclusions: Overall, capsanthin mitigated excitotoxic stress by maintaining redox balance, limiting inflammatory responses, and protecting mitochondrial energy metabolism in neuron-like cells, supporting its potential as a neuroprotective candidate for glutamate-induced neuronal stress. Read More

Full text for top nursing and allied health literature.

X