Nutrients, Vol. 18, Pages 45: Machine Learning-Driven Precision Nutrition: A Paradigm Evolution in Dietary Assessment and Intervention
Nutrients doi: 10.3390/nu18010045
Authors:
Wenbin Quan
Jingbo Zhou
Juan Wang
Jihong Huang
Liping Du
The rising global burden of chronic diseases highlights the limitations of traditional dietary guidelines. Precision Nutrition (PN) aims to deliver personalized dietary advice to optimize individual health, and the effective implementation of PN fundamentally relies on comprehensive and accurate dietary data. However, conventional dietary assessment methods often suffer from quantification errors and poor adaptability to dynamic changes, leading to inaccurate data and ineffective guidance. Machine learning (ML) offers a powerful suite of tools to address these limitations, enabling a paradigm shift across the nutritional management pipeline. Using dietary data as a thematic thread, this article outlines this transformation and synthesizes recent advances across dietary assessment, in-depth mining, and nutritional intervention. Additionally, current challenges and future trends in this domain are also further discussed. ML is driving a critical shift from a subjective, static mode to an objective, dynamic, and personalized paradigm, enabling a loop nutrition management framework. Precise food recognition and nutrient estimation can be implemented automatically with ML techniques like computer vision (CV) and natural language processing (NLP). Integrating with multiple data sources, ML is conducive to uncovering dietary patterns, assessing nutritional status, and deciphering intricate nutritional mechanisms. It also facilitates the development of personalized dietary intervention strategies tailored to individual needs, while enabling adaptive optimization based on users’ feedback and intervention effectiveness. Although challenges regarding data privacy and model interpretability persist, ML undeniably constitutes the vital technical support for advancing PN into practical reality.
The rising global burden of chronic diseases highlights the limitations of traditional dietary guidelines. Precision Nutrition (PN) aims to deliver personalized dietary advice to optimize individual health, and the effective implementation of PN fundamentally relies on comprehensive and accurate dietary data. However, conventional dietary assessment methods often suffer from quantification errors and poor adaptability to dynamic changes, leading to inaccurate data and ineffective guidance. Machine learning (ML) offers a powerful suite of tools to address these limitations, enabling a paradigm shift across the nutritional management pipeline. Using dietary data as a thematic thread, this article outlines this transformation and synthesizes recent advances across dietary assessment, in-depth mining, and nutritional intervention. Additionally, current challenges and future trends in this domain are also further discussed. ML is driving a critical shift from a subjective, static mode to an objective, dynamic, and personalized paradigm, enabling a loop nutrition management framework. Precise food recognition and nutrient estimation can be implemented automatically with ML techniques like computer vision (CV) and natural language processing (NLP). Integrating with multiple data sources, ML is conducive to uncovering dietary patterns, assessing nutritional status, and deciphering intricate nutritional mechanisms. It also facilitates the development of personalized dietary intervention strategies tailored to individual needs, while enabling adaptive optimization based on users’ feedback and intervention effectiveness. Although challenges regarding data privacy and model interpretability persist, ML undeniably constitutes the vital technical support for advancing PN into practical reality. Read More
