Nutrients, Vol. 18, Pages 213: Vitamin Supplementation in Sports: A Decade of Evidence-Based Insights

Nutrients, Vol. 18, Pages 213: Vitamin Supplementation in Sports: A Decade of Evidence-Based Insights

Nutrients doi: 10.3390/nu18020213

Authors:
Magdalena Wiacek
Emilia Nowak
Piotr Lipka
Remigiusz Denda
Igor Z. Zubrzycki

Background: Vitamins are micronutrients involved in multiple physiological processes critical for athletic performance. Because athletes are often exposed to increased oxidative stress, higher metabolic turnover, and greater nutritional demands, which can potentially lead to deficiencies in vitamins, understanding vitamin supplementation as a function of sport discipline is of fundamental importance. Methods: This narrative review synthesizes research findings from the past decade, supplemented with earlier studies where necessary, focusing on vitamins A, C, D, E, and the B-complex vitamins. Peer-reviewed literature was evaluated for evidence on the prevalence of deficiencies in athletes, physiological mechanisms, supplementation strategies, and their effects on performance, injury prevention, and recovery. Results: Vitamin D deficiency is highly prevalent among athletes, particularly in indoor sports and during the winter months. Supplementation has been shown to improve musculoskeletal health and potentially reduce injury risk. The antioxidant vitamins C and E can attenuate exercise-induced oxidative stress and muscle damage; however, excessive intake may impair adaptive responses such as mitochondrial biogenesis and protein synthesis. Vitamin A contributes to immune modulation, metabolic regulation, and mitochondrial function, while B-complex vitamins support energy metabolism and red blood cell synthesis. Conclusions: Vitamin supplementation in athletes should be individualized, targeting confirmed deficiencies and tailored to sport-specific demands, age, sex, and training intensity. Dietary optimization should remain the primary strategy, with supplementation serving as an adjunct when intake is insufficient. Further high-quality, sport-specific, and long-term studies are needed to establish clear dosing guidelines and to assess the balance between performance benefits and potential risks associated with over-supplementation.

​Background: Vitamins are micronutrients involved in multiple physiological processes critical for athletic performance. Because athletes are often exposed to increased oxidative stress, higher metabolic turnover, and greater nutritional demands, which can potentially lead to deficiencies in vitamins, understanding vitamin supplementation as a function of sport discipline is of fundamental importance. Methods: This narrative review synthesizes research findings from the past decade, supplemented with earlier studies where necessary, focusing on vitamins A, C, D, E, and the B-complex vitamins. Peer-reviewed literature was evaluated for evidence on the prevalence of deficiencies in athletes, physiological mechanisms, supplementation strategies, and their effects on performance, injury prevention, and recovery. Results: Vitamin D deficiency is highly prevalent among athletes, particularly in indoor sports and during the winter months. Supplementation has been shown to improve musculoskeletal health and potentially reduce injury risk. The antioxidant vitamins C and E can attenuate exercise-induced oxidative stress and muscle damage; however, excessive intake may impair adaptive responses such as mitochondrial biogenesis and protein synthesis. Vitamin A contributes to immune modulation, metabolic regulation, and mitochondrial function, while B-complex vitamins support energy metabolism and red blood cell synthesis. Conclusions: Vitamin supplementation in athletes should be individualized, targeting confirmed deficiencies and tailored to sport-specific demands, age, sex, and training intensity. Dietary optimization should remain the primary strategy, with supplementation serving as an adjunct when intake is insufficient. Further high-quality, sport-specific, and long-term studies are needed to establish clear dosing guidelines and to assess the balance between performance benefits and potential risks associated with over-supplementation. Read More

Full text for top nursing and allied health literature.

X