Nutrients, Vol. 18, Pages 329: Dietary Supplementation with Chrysanthemum morifolium Ramat cv. ‘Hangju’ Flower Extract Alleviates Skin Photoaging in SKH-1 Hairless Mice
Nutrients doi: 10.3390/nu18020329
Authors:
Yujie Lao
Ruixuan Geng
Mengjie Li
Seong-Gook Kang
Kunlun Huang
Bin Deng
Huiji Zhou
Rong Luo
Tao Tong
Background/Objectives: Skin photoaging represents a predominant form of extrinsic aging, characterized by structural and functional impairment of the skin barrier. In severe cases, it may precipitate dermatological diseases and even tumors. Given the prevalence and detrimental effects of skin photoaging, strategies for its effective prevention and mitigation have garnered significant research interest. Chrysanthemum morifolium Ramat cv. ‘Hangju’ contains diverse bioactive compounds, including flavonoids, phenylpropanoids, phenolic acids, and polysaccharides, which have been proven to exhibit antioxidant and anti-inflammatory effects. Methods: This study employed a UVB-induced mouse model of skin photoaging to evaluate the potential of dietary supplementation with Chrysanthemum morifolium Ramat cv. ‘Hangju’ flower extract (CME) in vivo. Results: In the photoaged skin of female SKH-1 hairless mice, dietary supplementation with CME significantly increased skin moisture content, reduced wrinkle formation, suppressed epidermal hyperplasia, enhanced collagen density, and suppressed the senescence marker expression and DNA damage marker expression. Analysis of the skin transcriptome suggested that CME could alter gene expression patterns and potentially modulate critical signaling pathways involved in skin homeostasis. Moreover, 16S rRNA sequencing indicated that CME mitigated UVB-induced gut microbiota dysbiosis. Conclusions: These preclinical findings reveal the anti-photoaging property of dietary CME supplementation and point to its potential application as a functional dietary supplement for promoting skin health.
Background/Objectives: Skin photoaging represents a predominant form of extrinsic aging, characterized by structural and functional impairment of the skin barrier. In severe cases, it may precipitate dermatological diseases and even tumors. Given the prevalence and detrimental effects of skin photoaging, strategies for its effective prevention and mitigation have garnered significant research interest. Chrysanthemum morifolium Ramat cv. ‘Hangju’ contains diverse bioactive compounds, including flavonoids, phenylpropanoids, phenolic acids, and polysaccharides, which have been proven to exhibit antioxidant and anti-inflammatory effects. Methods: This study employed a UVB-induced mouse model of skin photoaging to evaluate the potential of dietary supplementation with Chrysanthemum morifolium Ramat cv. ‘Hangju’ flower extract (CME) in vivo. Results: In the photoaged skin of female SKH-1 hairless mice, dietary supplementation with CME significantly increased skin moisture content, reduced wrinkle formation, suppressed epidermal hyperplasia, enhanced collagen density, and suppressed the senescence marker expression and DNA damage marker expression. Analysis of the skin transcriptome suggested that CME could alter gene expression patterns and potentially modulate critical signaling pathways involved in skin homeostasis. Moreover, 16S rRNA sequencing indicated that CME mitigated UVB-induced gut microbiota dysbiosis. Conclusions: These preclinical findings reveal the anti-photoaging property of dietary CME supplementation and point to its potential application as a functional dietary supplement for promoting skin health. Read More
