Nutrients, Vol. 18, Pages 362: Garlic-Derived S-allylcysteine Improves Functional Recovery and Neurotrophin Signaling After Brain Ischemia in Female Rats
Nutrients doi: 10.3390/nu18020362
Authors:
Sandra Monserrat Bautista-Perez
Carlos Alfredo Silva-Islas
Maria-del-Carmen Cardenas-Aguayo
Obed-Ricardo Lora-Marín
Maria-del-Carmen Silva-Lucero
Arturo Avendaño-Estrada
Miguel A. Ávila-Rodríguez
Jacqueline V. Lara-Espinosa
Rogelio Hernández-Pando
Martha Menes-Arzate
José Pedraza-Chaverri
Omar Emiliano Aparicio-Trejo
Rosina Sánchez-Thomas
Alejandra Figueroa
Diana Barrera-Oviedo
Perla D. Maldonado
Background/Objectives: Ischemic stroke is a leading cause of death and disability, and neuroprotection therapies, or those that increase recovery, are not available. While the garlic-derived bioactive compound S-allyl cysteine (SAC) has shown neuroprotective properties, its subacute long-term effects remain underexplored, particularly in females. Methods: We evaluated whether SAC supports functional recovery after ischemia/reperfusion (IR), focusing on neurotrophin signaling, tropomyosin receptor kinase B (TrkB), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Adult female Wistar rats underwent 1 h of ischemia and 15 days of reperfusion. SAC (100 mg/kg, i.p.) was administered at the onset of reperfusion and daily for 15 days. Motor and cognitive deficit tests were performed. Infarct area, Ki67, brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), pTrkB, pAKT, and pERK levels were quantified in the cortex, striatum, and hippocampus. Results: MicroPET analysis revealed comparable glucose uptake between the IR and IR + SAC groups, indicating similar ischemic severity. SAC reduced infarct area (54.7%) and significantly improved motor deficits (53.9%), circling behavior (38.9%), and long-term memory compared with ischemia/reperfusion (IR) animals. SAC increased the proportion of Ki67-positive cells (4.3-fold in the cortex and 1.8-fold in the striatum) and enhanced neurotrophin levels, NGF (cortex), BDNF (cortex and striatum), VEGF (striatum), pTrkB, pAKT, and pERK (cortex and striatum). Conclusions: SAC supports post-ischemic recovery, improving motor performance and preserving long-term recognition memory, effects that could be associated with increased cell proliferation, neurotrophin levels, and activation of the TrkB, AKT, and ERK pathways.
Background/Objectives: Ischemic stroke is a leading cause of death and disability, and neuroprotection therapies, or those that increase recovery, are not available. While the garlic-derived bioactive compound S-allyl cysteine (SAC) has shown neuroprotective properties, its subacute long-term effects remain underexplored, particularly in females. Methods: We evaluated whether SAC supports functional recovery after ischemia/reperfusion (IR), focusing on neurotrophin signaling, tropomyosin receptor kinase B (TrkB), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Adult female Wistar rats underwent 1 h of ischemia and 15 days of reperfusion. SAC (100 mg/kg, i.p.) was administered at the onset of reperfusion and daily for 15 days. Motor and cognitive deficit tests were performed. Infarct area, Ki67, brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), pTrkB, pAKT, and pERK levels were quantified in the cortex, striatum, and hippocampus. Results: MicroPET analysis revealed comparable glucose uptake between the IR and IR + SAC groups, indicating similar ischemic severity. SAC reduced infarct area (54.7%) and significantly improved motor deficits (53.9%), circling behavior (38.9%), and long-term memory compared with ischemia/reperfusion (IR) animals. SAC increased the proportion of Ki67-positive cells (4.3-fold in the cortex and 1.8-fold in the striatum) and enhanced neurotrophin levels, NGF (cortex), BDNF (cortex and striatum), VEGF (striatum), pTrkB, pAKT, and pERK (cortex and striatum). Conclusions: SAC supports post-ischemic recovery, improving motor performance and preserving long-term recognition memory, effects that could be associated with increased cell proliferation, neurotrophin levels, and activation of the TrkB, AKT, and ERK pathways. Read More
