Nutrients, Vol. 17, Pages 2004: Employing Nutrition to Delay Aging: A Plant-Based Telomere-Friendly Dietary Revolution

Nutrients, Vol. 17, Pages 2004: Employing Nutrition to Delay Aging: A Plant-Based Telomere-Friendly Dietary Revolution

Nutrients doi: 10.3390/nu17122004

Authors:
Joanna Polom
Virginia Boccardi

Telomere attrition is a hallmark of cellular aging, influenced by oxidative stress, chronic inflammation, and metabolic dysregulation. Emerging evidence suggests that dietary patterns rich in plant-based, minimally processed foods may influence telomere dynamics, potentially extending healthspan. This narrative review synthesizes current literature on the molecular mechanisms by which specific nutrients—such as antioxidants, polyphenols, omega-3 fatty acids, and methyl donors—affect telomere length and telomerase activity. Conversely, high consumption of ultra-processed foods (UPFs) has been associated with accelerated telomere shortening and dysfunction, likely due to increased oxidative stress, inflammation, and nutrient deficiencies. We propose a tiered dietary intervention model including preventive, therapeutic, and regenerative phases, tailored to individual aging trajectories and physiological statuses. This model emphasizes the consumption of whole plant foods, functional bioactives, and the reduction of UPFs to preserve telomere integrity. Implementing such dietary strategies may offer a viable approach to mitigate age-related cellular decline and promote healthy aging.

​Telomere attrition is a hallmark of cellular aging, influenced by oxidative stress, chronic inflammation, and metabolic dysregulation. Emerging evidence suggests that dietary patterns rich in plant-based, minimally processed foods may influence telomere dynamics, potentially extending healthspan. This narrative review synthesizes current literature on the molecular mechanisms by which specific nutrients—such as antioxidants, polyphenols, omega-3 fatty acids, and methyl donors—affect telomere length and telomerase activity. Conversely, high consumption of ultra-processed foods (UPFs) has been associated with accelerated telomere shortening and dysfunction, likely due to increased oxidative stress, inflammation, and nutrient deficiencies. We propose a tiered dietary intervention model including preventive, therapeutic, and regenerative phases, tailored to individual aging trajectories and physiological statuses. This model emphasizes the consumption of whole plant foods, functional bioactives, and the reduction of UPFs to preserve telomere integrity. Implementing such dietary strategies may offer a viable approach to mitigate age-related cellular decline and promote healthy aging. Read More

Full text for top nursing and allied health literature.

X