Nutrients, Vol. 17, Pages 2714: Natural Products as Modulators of Iron Metabolism and Ferroptosis in Diabetes and Its Complications

Nutrients, Vol. 17, Pages 2714: Natural Products as Modulators of Iron Metabolism and Ferroptosis in Diabetes and Its Complications

Nutrients doi: 10.3390/nu17162714

Authors:
Yuanfen Xie
Chunqin Li
Xige Dong
Beilei Wang
Jiaxin Qin
Huanhuan Lv

Diabetes, a major global healthcare challenge, is characterized by chronic hyperglycemia and significantly exacerbates the severity of systemic complications. Iron, an essential element ubiquitously present in biological systems, is involved in many biological processes facilitating cell proliferation and growth. However, excessive iron accumulation promotes oxidative damage through the Fenton reaction, thereby increasing the incidence of diabetes and worsening diabetic complications. Notably, ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a key mechanism underlying diabetes and diabetic complications. In this review, we provide an update on the current understanding of iron metabolism dysregulation in diabetes risk, and disclose the mechanistic links between iron overload and diabetes evidenced in hereditary hemochromatosis and thalassemia. We particularly highlight iron-mediated oxidative stress as a central nexus impairing glucose metabolism and insulin sensitivity. Furthermore, we discuss the significance of dysmetabolic iron and ferroptosis activation in the progression of diabetes and diabetic complications, as well as the possible application of natural products for iron metabolism regulation and ferroptosis-inhibition-targeted therapeutic strategies to treat diabetes and diabetic complications.

​Diabetes, a major global healthcare challenge, is characterized by chronic hyperglycemia and significantly exacerbates the severity of systemic complications. Iron, an essential element ubiquitously present in biological systems, is involved in many biological processes facilitating cell proliferation and growth. However, excessive iron accumulation promotes oxidative damage through the Fenton reaction, thereby increasing the incidence of diabetes and worsening diabetic complications. Notably, ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a key mechanism underlying diabetes and diabetic complications. In this review, we provide an update on the current understanding of iron metabolism dysregulation in diabetes risk, and disclose the mechanistic links between iron overload and diabetes evidenced in hereditary hemochromatosis and thalassemia. We particularly highlight iron-mediated oxidative stress as a central nexus impairing glucose metabolism and insulin sensitivity. Furthermore, we discuss the significance of dysmetabolic iron and ferroptosis activation in the progression of diabetes and diabetic complications, as well as the possible application of natural products for iron metabolism regulation and ferroptosis-inhibition-targeted therapeutic strategies to treat diabetes and diabetic complications. Read More

Full text for top nursing and allied health literature.

X