Nutrients, Vol. 17, Pages 2716: Leveraging Deep Learning to Enhance Malnutrition Detection via Nutrition Risk Screening 2002: Insights from a National Cohort

Nutrients, Vol. 17, Pages 2716: Leveraging Deep Learning to Enhance Malnutrition Detection via Nutrition Risk Screening 2002: Insights from a National Cohort

Nutrients doi: 10.3390/nu17162716

Authors:
Nadir Yalçın
Merve Kaşıkcı
Burcu Kelleci-Çakır
Kutay Demirkan
Karel Allegaert
Meltem Halil
Mutlu Doğanay
Osman Abbasoğlu

Purpose: This study aimed to develop and validate a new machine learning (ML)-based screening tool for a two-step prediction of the need for and type of nutritional therapy (enteral, parenteral, or combined) using Nutrition Risk Screening 2002 (NRS-2002) and other demographic parameters from the Optimal Nutrition Care for All (ONCA) national cohort data. Methods: This multicenter retrospective cohort study included 191,028 patients, with data on age, gender, body mass index (BMI), NRS-2002 score, presence of cancer, and hospital unit type. In the first step, classification models estimated whether patients required nutritional therapy, while the second step predicted the type of therapy. The dataset was divided into 60% training, 20% validation, and 20% test sets. Random Forest (RF), Artificial Neural Network (ANN), deep learning (DL), Elastic Net (EN), and Naive Bayes (NB) algorithms were used for classification. Performance was evaluated using AUC, accuracy, balanced accuracy, MCC, sensitivity, specificity, PPV, NPV, and F1-score. Results: Of the patients, 54.6% were male, 9.2% had cancer, and 49.9% were hospitalized in internal medicine units. According to NRS-2002, 11.6% were at risk of malnutrition (≥3 points). The DL algorithm performed best in both classification steps. The top three variables for determining the need for nutritional therapy were severe illness, reduced dietary intake in the last week, and mild impaired nutritional status (AUC = 0.933). For determining the type of nutritional therapy, the most important variables were severe illness, severely impaired nutritional status, and ICU admission (AUC = 0.741). Adding gender, cancer status, and ward type to NRS-2002 improved AUC by 0.6% and 3.27% for steps 1 and 2, respectively. Conclusions: Incorporating gender, cancer status, and ward type into the widely used and validated NRS-2002 led to the development of a new scale that accurately classifies nutritional therapy type. This ML-enhanced model has the potential to be integrated into clinical workflows as a decision support system to guide nutritional therapy, although further external validation with larger multinational cohorts is needed.

​Purpose: This study aimed to develop and validate a new machine learning (ML)-based screening tool for a two-step prediction of the need for and type of nutritional therapy (enteral, parenteral, or combined) using Nutrition Risk Screening 2002 (NRS-2002) and other demographic parameters from the Optimal Nutrition Care for All (ONCA) national cohort data. Methods: This multicenter retrospective cohort study included 191,028 patients, with data on age, gender, body mass index (BMI), NRS-2002 score, presence of cancer, and hospital unit type. In the first step, classification models estimated whether patients required nutritional therapy, while the second step predicted the type of therapy. The dataset was divided into 60% training, 20% validation, and 20% test sets. Random Forest (RF), Artificial Neural Network (ANN), deep learning (DL), Elastic Net (EN), and Naive Bayes (NB) algorithms were used for classification. Performance was evaluated using AUC, accuracy, balanced accuracy, MCC, sensitivity, specificity, PPV, NPV, and F1-score. Results: Of the patients, 54.6% were male, 9.2% had cancer, and 49.9% were hospitalized in internal medicine units. According to NRS-2002, 11.6% were at risk of malnutrition (≥3 points). The DL algorithm performed best in both classification steps. The top three variables for determining the need for nutritional therapy were severe illness, reduced dietary intake in the last week, and mild impaired nutritional status (AUC = 0.933). For determining the type of nutritional therapy, the most important variables were severe illness, severely impaired nutritional status, and ICU admission (AUC = 0.741). Adding gender, cancer status, and ward type to NRS-2002 improved AUC by 0.6% and 3.27% for steps 1 and 2, respectively. Conclusions: Incorporating gender, cancer status, and ward type into the widely used and validated NRS-2002 led to the development of a new scale that accurately classifies nutritional therapy type. This ML-enhanced model has the potential to be integrated into clinical workflows as a decision support system to guide nutritional therapy, although further external validation with larger multinational cohorts is needed. Read More

Full text for top nursing and allied health literature.

X