Nutrients, Vol. 17, Pages 2726: Potential Effects of Low-Calorie Sweeteners on Human Health

Nutrients, Vol. 17, Pages 2726: Potential Effects of Low-Calorie Sweeteners on Human Health

Nutrients doi: 10.3390/nu17172726

Authors:
Huang-Pin Chen
Yuan Kao
Meng-Wei Lin
Chun-Te Lee
Hung-Tsung Wu
Hsin-Yu Kuo

Low-calorie sweeteners (LCS) are widely utilized as sugar substitutes due to their intense sweetness, thermal stability, and applicability in weight management and diabetic-friendly products. However, increasing evidence has raised concerns about their potential long-term effects on metabolic health, glucose regulation, cardiovascular function, carcinogenicity, and gut microbiota composition. This review systematically evaluates the pharmacokinetics, metabolic effects, and associated health outcomes of major LCS. Mechanistically, LCS exert effects via sweet taste receptor-mediated pathways, altering glucose absorption, insulin secretion, and intracellular signaling cascades. Additionally, LCS influence gut microbiota composition, with certain agents promoting dysbiosis and glucose intolerance. While some findings support the metabolic benefits of selected LCS, others underscore potential risks, necessitating cautious interpretation. In conclusion, while LCS offer viable alternatives to sugar, their health effects are context-dependent and may vary across different sweeteners and populations. Long-term, high-quality clinical trials are essential to elucidate their safety and efficacy.

​Low-calorie sweeteners (LCS) are widely utilized as sugar substitutes due to their intense sweetness, thermal stability, and applicability in weight management and diabetic-friendly products. However, increasing evidence has raised concerns about their potential long-term effects on metabolic health, glucose regulation, cardiovascular function, carcinogenicity, and gut microbiota composition. This review systematically evaluates the pharmacokinetics, metabolic effects, and associated health outcomes of major LCS. Mechanistically, LCS exert effects via sweet taste receptor-mediated pathways, altering glucose absorption, insulin secretion, and intracellular signaling cascades. Additionally, LCS influence gut microbiota composition, with certain agents promoting dysbiosis and glucose intolerance. While some findings support the metabolic benefits of selected LCS, others underscore potential risks, necessitating cautious interpretation. In conclusion, while LCS offer viable alternatives to sugar, their health effects are context-dependent and may vary across different sweeteners and populations. Long-term, high-quality clinical trials are essential to elucidate their safety and efficacy. Read More

Full text for top nursing and allied health literature.

X