Nutrients, Vol. 17, Pages 2803: Potential Efficacy of Propolis in Treating Helicobacter pylori Infection and Its Mechanisms of Action
Nutrients doi: 10.3390/nu17172803
Authors:
Haitao Nie
Qing Li
Keke Zhao
Wen Li
Cuiping Zhang
Xiasen Jiang
Background: Helicobacter pylori (H. pylori) is a major pathogen associated with a variety of gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. As a natural bioactive product, propolis exhibits multifaceted and multi-mechanistic effects. Due to its immunomodulatory, anti-inflammatory, and antioxidant properties, propolis has emerged as a promising therapeutic alternative, offering an innovative approach to managing H. pylori infections and providing new insights into addressing antibiotic resistance. Methods: This comprehensive review, synthesizing data from PubMed, ScienceDirect, and SciFinder, examines the mechanisms by which propolis combats H. pylori. Results: Propolis has demonstrated significant antibacterial efficacy against H. pylori in both in vitro and in vivo models. Its multitargeted mechanisms of action include direct inhibition of bacterial growth, interference with the expression of virulence factors, suppression of virulence-associated enzymes and toxin activity, immunomodulation, and anti-inflammatory effects. These combined actions alleviate gastric mucosal inflammation and damage, reduce bacterial colonization, and promote mucosal healing through antioxidant and repair-promoting effects. Furthermore, propolis disrupts oral biofilms, restores the balance of the oral microbiome, and exerts bactericidal effects in the oral cavity. Synergistic interactions between propolis and conventional medications or other natural agents highlight its potential as an adjunctive therapy. Conclusions: Propolis demonstrates dual functionality by inhibiting the release of inflammatory mediators and suppressing H. pylori growth, highlighting its potential as an adjuvant therapeutic agent. However, clinical translation requires standardized quality control and higher-level clinical evidence. Future research should focus on validating its clinical efficacy and determining optimal dosing regimens, and exploring its role in reducing H. pylori recurrence.
Background: Helicobacter pylori (H. pylori) is a major pathogen associated with a variety of gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. As a natural bioactive product, propolis exhibits multifaceted and multi-mechanistic effects. Due to its immunomodulatory, anti-inflammatory, and antioxidant properties, propolis has emerged as a promising therapeutic alternative, offering an innovative approach to managing H. pylori infections and providing new insights into addressing antibiotic resistance. Methods: This comprehensive review, synthesizing data from PubMed, ScienceDirect, and SciFinder, examines the mechanisms by which propolis combats H. pylori. Results: Propolis has demonstrated significant antibacterial efficacy against H. pylori in both in vitro and in vivo models. Its multitargeted mechanisms of action include direct inhibition of bacterial growth, interference with the expression of virulence factors, suppression of virulence-associated enzymes and toxin activity, immunomodulation, and anti-inflammatory effects. These combined actions alleviate gastric mucosal inflammation and damage, reduce bacterial colonization, and promote mucosal healing through antioxidant and repair-promoting effects. Furthermore, propolis disrupts oral biofilms, restores the balance of the oral microbiome, and exerts bactericidal effects in the oral cavity. Synergistic interactions between propolis and conventional medications or other natural agents highlight its potential as an adjunctive therapy. Conclusions: Propolis demonstrates dual functionality by inhibiting the release of inflammatory mediators and suppressing H. pylori growth, highlighting its potential as an adjuvant therapeutic agent. However, clinical translation requires standardized quality control and higher-level clinical evidence. Future research should focus on validating its clinical efficacy and determining optimal dosing regimens, and exploring its role in reducing H. pylori recurrence. Read More