Nutrients, Vol. 17, Pages 2821: Ozone Nanobubble Water as a Sustainable Strategy to Enhance Metabolism, Muscle Function, and Exercise Performance in Mice

Nutrients, Vol. 17, Pages 2821: Ozone Nanobubble Water as a Sustainable Strategy to Enhance Metabolism, Muscle Function, and Exercise Performance in Mice

Nutrients doi: 10.3390/nu17172821

Authors:
Cheng-Jeng Tsai
Peng-Cheng Hsu
Meng-l Kuo
Yi-Ming Chen

Background/Objectives: Nanobubble water (NBW) is being studied increasingly for its potential benefits in sports nutrition. This study aimed to evaluate whether supplementation with ozone-enriched NBW (O3-NBW) could improve integrated exercise capacity—encompassing endurance performance, muscle strength, and postexercise recovery as well as body composition and metabolic adaptations in mice. Methods: Male ICR mice (n = 24) were allocated into Control, Air-NBW, or O3-NBW (0.2–1 mg/L ozone) groups for 4 weeks. Results: O3-NBW treatment considerably enhanced forelimb grip strength and treadmill running endurance compared to the Control group (both p < 0.05). Analyses of body composition revealed a higher proportion of lean mass and muscle glycogen storage in NBW groups, notably with O3-NBW. Serum markers gathered post-exercise demonstrated a reduction in ammonia and blood urea nitrogen (BUN), suggesting improved nitrogen metabolism. Levels of resting serum creatine kinase (CK) and uric acid were also lower in O3-NBW mice, indicating potential benefits for muscle recovery. In addition, O3-NBW treatment significantly enhanced oxygen consumption (VO2) and reduced the respiratory quotient (RQ), signifying amplified fat oxidation, while also lowering total energy expenditure (all p < 0.05). Spontaneous wheel-running activity remained consistent across all the groups. Conclusions: Taken as a whole, these findings emphasize that O3-NBW supplementation offers ergogenic and metabolic advantages by improving integrated exercise capacity and efficiency of gas exchange, without adverse effects.

​Background/Objectives: Nanobubble water (NBW) is being studied increasingly for its potential benefits in sports nutrition. This study aimed to evaluate whether supplementation with ozone-enriched NBW (O3-NBW) could improve integrated exercise capacity—encompassing endurance performance, muscle strength, and postexercise recovery as well as body composition and metabolic adaptations in mice. Methods: Male ICR mice (n = 24) were allocated into Control, Air-NBW, or O3-NBW (0.2–1 mg/L ozone) groups for 4 weeks. Results: O3-NBW treatment considerably enhanced forelimb grip strength and treadmill running endurance compared to the Control group (both p < 0.05). Analyses of body composition revealed a higher proportion of lean mass and muscle glycogen storage in NBW groups, notably with O3-NBW. Serum markers gathered post-exercise demonstrated a reduction in ammonia and blood urea nitrogen (BUN), suggesting improved nitrogen metabolism. Levels of resting serum creatine kinase (CK) and uric acid were also lower in O3-NBW mice, indicating potential benefits for muscle recovery. In addition, O3-NBW treatment significantly enhanced oxygen consumption (VO2) and reduced the respiratory quotient (RQ), signifying amplified fat oxidation, while also lowering total energy expenditure (all p < 0.05). Spontaneous wheel-running activity remained consistent across all the groups. Conclusions: Taken as a whole, these findings emphasize that O3-NBW supplementation offers ergogenic and metabolic advantages by improving integrated exercise capacity and efficiency of gas exchange, without adverse effects. Read More

Full text for top nursing and allied health literature.

X