Nutrients, Vol. 17, Pages 2836: A Narrative Hypothesis: The Important Role of Gut Microbiota in the Modulation of Effort Tolerance in Endurance Athletes

Nutrients, Vol. 17, Pages 2836: A Narrative Hypothesis: The Important Role of Gut Microbiota in the Modulation of Effort Tolerance in Endurance Athletes

Nutrients doi: 10.3390/nu17172836

Authors:
Jesus Álvarez-Herms
Martin Burtscher
Francisco Corbi
Adriana González
Adrián Odriozola

Background: Regulating sensations of fatigue and discomfort while performing maximal endurance exercise becomes essential for making informed decisions about persistence and/or failure during intense exercise. Athletes with a higher effort capacity have competitive advantages over those with a lower one. The microbiota–brain axis is a considered the sixth sense and a modulator of the host’s emotional stability and physical well-being. Objectives: This narrative review aims to explore and evaluate the potential mechanisms involved in regulating perceptions during endurance exercise, with a focus on the possible relationship between the gut microbiota balance and the neural system as an adaptive response to high fatigue chronic exposure. Methods: Electronic databases (PubMed, Web of Science, Google Scholar, and Scopus) were used to identify studies and hypotheses that had documented predefined search terms related to endurance exercise, gut microbiota, the central nervous system, pain, discomfort, fatigue, and tolerance to effort. Results: This narrative review shifts the focus concerning the symbiotic relationship between the gut microbiota, the vagus nerve, the central/enteric nervous system, and the regulation of afferences from different organs and systems to manage discomfort and fatigue perceptions during maximal physical effort. Consequently, the chronicity supporting fatigued exercise and nutritional stimuli could specifically adapt the microbiota–brain connection through chronic efferences and afferences. The present hypothesis could represent a new focus to be considered, analysing individual differences in tolerating fatigue and discomfort in athletes supporting conditions of intense endurance exercise. Conclusions: A growing body of evidence suggests that the gut microbiota has rapid adaptations to afferences from the brain axis, with a possible relationship to the management of fatigue, pain, and discomfort. Therefore, the host–microbiota relationship could determine predisposition to endurance performance by increasing thresholds of sensitive afferences perceived and tolerated. A richer and more diverse GM of athletes in comparison with sedentary subjects can improve the bacteria-producing metabolites connected to brain activity related with fatigue. The increase in fatigue thresholds directly improves exercise performance, and the gut–brain axis may contribute through the equilibrium of metabolites produced for the microbiota.

​Background: Regulating sensations of fatigue and discomfort while performing maximal endurance exercise becomes essential for making informed decisions about persistence and/or failure during intense exercise. Athletes with a higher effort capacity have competitive advantages over those with a lower one. The microbiota–brain axis is a considered the sixth sense and a modulator of the host’s emotional stability and physical well-being. Objectives: This narrative review aims to explore and evaluate the potential mechanisms involved in regulating perceptions during endurance exercise, with a focus on the possible relationship between the gut microbiota balance and the neural system as an adaptive response to high fatigue chronic exposure. Methods: Electronic databases (PubMed, Web of Science, Google Scholar, and Scopus) were used to identify studies and hypotheses that had documented predefined search terms related to endurance exercise, gut microbiota, the central nervous system, pain, discomfort, fatigue, and tolerance to effort. Results: This narrative review shifts the focus concerning the symbiotic relationship between the gut microbiota, the vagus nerve, the central/enteric nervous system, and the regulation of afferences from different organs and systems to manage discomfort and fatigue perceptions during maximal physical effort. Consequently, the chronicity supporting fatigued exercise and nutritional stimuli could specifically adapt the microbiota–brain connection through chronic efferences and afferences. The present hypothesis could represent a new focus to be considered, analysing individual differences in tolerating fatigue and discomfort in athletes supporting conditions of intense endurance exercise. Conclusions: A growing body of evidence suggests that the gut microbiota has rapid adaptations to afferences from the brain axis, with a possible relationship to the management of fatigue, pain, and discomfort. Therefore, the host–microbiota relationship could determine predisposition to endurance performance by increasing thresholds of sensitive afferences perceived and tolerated. A richer and more diverse GM of athletes in comparison with sedentary subjects can improve the bacteria-producing metabolites connected to brain activity related with fatigue. The increase in fatigue thresholds directly improves exercise performance, and the gut–brain axis may contribute through the equilibrium of metabolites produced for the microbiota. Read More

Full text for top nursing and allied health literature.

X