Nutrients, Vol. 17, Pages 3095: Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study

Nutrients, Vol. 17, Pages 3095: Reduced Fat Taste Sensitivity and Its Association with Childhood Obesity in Tunisian Children: A Cross-Sectional Study

Nutrients doi: 10.3390/nu17193095

Authors:
Rym Ben Othman
Inchirah Karmous
Farah Aissa
Halil İbrahim Ceylan
Youssef Zanina
Henda Jamoussi
Nicola Luigi Bragazzi
Ismail Dergaa

Background: Childhood obesity is a growing public health challenge, with altered taste perception potentially influencing food choices and contributing to weight gain. Objective: To determine detection thresholds for linoleic acid (fat taste) and sucrose (sweet taste) in children aged 6–12 years, and to explore associations with obesity, dietary intake, and food preferences. Methods: In this cross-sectional study, 100 Tunisian children (mean age: 8.05 ± 1.44 years; 54% girls; 45 obese, 55 non-obese) were recruited from an educational support center in Nabeul. Taste sensitivity was evaluated using the 3-alternative forced choice (3-AFC) method with ascending concentrations of linoleic acid (0.018–12.0 mM) for fat taste and sucrose (0.00125–0.32 mol/L) for sweet taste. Participants were categorized as tasters or non-tasters based on detection thresholds. Anthropometric measurements, 24 h dietary recalls, food frequency questionnaires, and food preference assessments were also conducted. Results: Low taste sensitivity was common (93% for sweet, 49% for fat). Girls were more often fat tasters than boys (68.6% vs. 31.4%, p = 0.003). Children with obesity had higher fat taste thresholds (median 3.00 mM, range 0.37–12.0) than non-obese peers (median 1.50 mM, range 0.018–6.0; p = 0.012), indicating reduced fat taste sensitivity. Linear regression showed a significant positive association between fat taste threshold and BMI (p = 0.001), meaning higher detection thresholds corresponded to higher BMI. Sweet taste thresholds did not differ significantly between children with and without obesity (p = 0.731). Sweet non-tasters consumed more sucrose (85.9 ± 64.9 g/d vs. 70.3 ± 62.3 g/d; p = 0.033) and reported more frequent table sugar use (p = 0.047). Fat non-tasters consumed more magnesium (425 ± 414 mg/d vs. 287 ± 60.8 mg/d; p = 0.026) and fiber (22.9 ± 7.51 g/d vs. 20.3 ± 5.32 g/d; p = 0.048) and reported higher intake frequencies of cheese (p = 0.039), sour cream (p = 0.004), and fast food (p = 0.012). Food preferences reflected similar patterns, with non-tasters generally rating high-fat or high-sugar foods more favorably. While most children demonstrated high detection thresholds, girls showed significantly higher fat taste sensitivity compared to boys (p = 0.03). Children with obesity exhibited significantly higher fat taste detection thresholds compared to non-obese children (p = 0.012), with thresholds ranging from 0.37 to 12.0 mM versus 0.018 to 6.0 mM, respectively. No significant difference was observed for sweet taste perception between weight groups (p = 0.731). Conclusions: Nearly half of the children exhibited reduced fat taste sensitivity, which was moderately associated with obesity and positively linked to BMI.

​Background: Childhood obesity is a growing public health challenge, with altered taste perception potentially influencing food choices and contributing to weight gain. Objective: To determine detection thresholds for linoleic acid (fat taste) and sucrose (sweet taste) in children aged 6–12 years, and to explore associations with obesity, dietary intake, and food preferences. Methods: In this cross-sectional study, 100 Tunisian children (mean age: 8.05 ± 1.44 years; 54% girls; 45 obese, 55 non-obese) were recruited from an educational support center in Nabeul. Taste sensitivity was evaluated using the 3-alternative forced choice (3-AFC) method with ascending concentrations of linoleic acid (0.018–12.0 mM) for fat taste and sucrose (0.00125–0.32 mol/L) for sweet taste. Participants were categorized as tasters or non-tasters based on detection thresholds. Anthropometric measurements, 24 h dietary recalls, food frequency questionnaires, and food preference assessments were also conducted. Results: Low taste sensitivity was common (93% for sweet, 49% for fat). Girls were more often fat tasters than boys (68.6% vs. 31.4%, p = 0.003). Children with obesity had higher fat taste thresholds (median 3.00 mM, range 0.37–12.0) than non-obese peers (median 1.50 mM, range 0.018–6.0; p = 0.012), indicating reduced fat taste sensitivity. Linear regression showed a significant positive association between fat taste threshold and BMI (p = 0.001), meaning higher detection thresholds corresponded to higher BMI. Sweet taste thresholds did not differ significantly between children with and without obesity (p = 0.731). Sweet non-tasters consumed more sucrose (85.9 ± 64.9 g/d vs. 70.3 ± 62.3 g/d; p = 0.033) and reported more frequent table sugar use (p = 0.047). Fat non-tasters consumed more magnesium (425 ± 414 mg/d vs. 287 ± 60.8 mg/d; p = 0.026) and fiber (22.9 ± 7.51 g/d vs. 20.3 ± 5.32 g/d; p = 0.048) and reported higher intake frequencies of cheese (p = 0.039), sour cream (p = 0.004), and fast food (p = 0.012). Food preferences reflected similar patterns, with non-tasters generally rating high-fat or high-sugar foods more favorably. While most children demonstrated high detection thresholds, girls showed significantly higher fat taste sensitivity compared to boys (p = 0.03). Children with obesity exhibited significantly higher fat taste detection thresholds compared to non-obese children (p = 0.012), with thresholds ranging from 0.37 to 12.0 mM versus 0.018 to 6.0 mM, respectively. No significant difference was observed for sweet taste perception between weight groups (p = 0.731). Conclusions: Nearly half of the children exhibited reduced fat taste sensitivity, which was moderately associated with obesity and positively linked to BMI. Read More

Full text for top nursing and allied health literature.

X