Nutrients, Vol. 16, Pages 4074: Protective Effects of Spirulina Against Lipid Micelles and Lipopolysaccharide-Induced Intestinal Epithelium Disruption in Caco-2 Cells: In Silico Molecular Docking Analysis of Phycocyanobilin

Nutrients, Vol. 16, Pages 4074: Protective Effects of Spirulina Against Lipid Micelles and Lipopolysaccharide-Induced Intestinal Epithelium Disruption in Caco-2 Cells: In Silico Molecular Docking Analysis of Phycocyanobilin

Nutrients doi: 10.3390/nu16234074

Authors:
Fatma Arrari
Rodolfo-Matias Ortiz-Flores
Said Lhamyani
Eduardo Garcia-Fuentes
Mohamed-Amine Jabri
Hichem Sebai
Francisco-Javier Bermudez-Silva

Damage to intestinal epithelial cells is present in obesity and other diseases because of inflammatory and oxidative processes. This damage compromises the gastrointestinal barrier, killing enterocytes, altering intestinal permeability, and eliciting abnormal immune responses that promote chronic inflammation. Recent evidence shows that spirulina is a potent natural agent with antioxidant and anti-inflammatory properties. Objectives: This study was conducted to evaluate the effect of spirulina aqueous extract (SPAE) on the alterations of the intestinal epithelium induced by lipid micelles (LMs) and/or inflammation induced by lipopolysaccharides (LPSs) in the Caco-2 cell line. Methods: In the current research, we assessed the protective actions of SPAE against cytotoxicity, oxidative stress, inflammation, and epithelial barrier perturbation by using an in vitro model, the intestinal Caco-2 cells, treated with LPSs and/or LMs. We also performed an in silico molecular docking analysis with spirulina’s bioactive compound, phycocyanobilin. Results: Our results showed that SPAE has no cytotoxic effect on Caco-2 cells. On the contrary, it improved cell viability and exhibited anti-inflammatory and antioxidant actions. SPAE also protected against endoplasmic reticulum stress and tight junction proteins, thus improving the epithelial barrier. The in silico study revealed a strong binding affinity of the phycocyanobilin compound with human SOD and NADPH oxidase and a good binding affinity towards COX-2 and iNOS. Conclusions: Taken together, these findings demonstrate the beneficial actions of SPAE on Caco-2 cells, suggesting it may be useful in preserving the epithelial intestinal barrier in human conditions involving oxidative stress and inflammation such as obesity.

​Damage to intestinal epithelial cells is present in obesity and other diseases because of inflammatory and oxidative processes. This damage compromises the gastrointestinal barrier, killing enterocytes, altering intestinal permeability, and eliciting abnormal immune responses that promote chronic inflammation. Recent evidence shows that spirulina is a potent natural agent with antioxidant and anti-inflammatory properties. Objectives: This study was conducted to evaluate the effect of spirulina aqueous extract (SPAE) on the alterations of the intestinal epithelium induced by lipid micelles (LMs) and/or inflammation induced by lipopolysaccharides (LPSs) in the Caco-2 cell line. Methods: In the current research, we assessed the protective actions of SPAE against cytotoxicity, oxidative stress, inflammation, and epithelial barrier perturbation by using an in vitro model, the intestinal Caco-2 cells, treated with LPSs and/or LMs. We also performed an in silico molecular docking analysis with spirulina’s bioactive compound, phycocyanobilin. Results: Our results showed that SPAE has no cytotoxic effect on Caco-2 cells. On the contrary, it improved cell viability and exhibited anti-inflammatory and antioxidant actions. SPAE also protected against endoplasmic reticulum stress and tight junction proteins, thus improving the epithelial barrier. The in silico study revealed a strong binding affinity of the phycocyanobilin compound with human SOD and NADPH oxidase and a good binding affinity towards COX-2 and iNOS. Conclusions: Taken together, these findings demonstrate the beneficial actions of SPAE on Caco-2 cells, suggesting it may be useful in preserving the epithelial intestinal barrier in human conditions involving oxidative stress and inflammation such as obesity. Read More

Full text for top nursing and allied health literature.

X