Nutrients, Vol. 17, Pages 1786: Adipose Tissue Dysfunction Induced by High-Fat Diet Consumption Is Associated with Higher Otoacoustic Emissions Threshold in Mice C57BL/6
Nutrients doi: 10.3390/nu17111786
Authors:
Gonzalo Terreros
Felipe Munoz
Matías Magdalena
Manuel Soto-Donoso
Nairo Torres
Amanda D’Espessailles
Background/Objectives: Obesity is a risk factor for several diseases; however, less has been researched about how diet-induced obesity may affect the auditory system. In this sense, the purpose of this study was to evaluate the effect of diet-induced obesity on the functionality and integrity of the outer hair cells, a key component of the organ of Corti, inside the cochlea. Furthermore, we hypothesized that adipose tissue (AT) status is associated with impaired outer hair cell auditory amplification in young C57BL/6 mice, contributing to increased vulnerability to hearing damage. Methods: Weaning male C57BL/6J mice (7 weeks old) weighing 22–23 g were divided into two diet groups: (i) a control diet or (ii) a high-fat diet (HFD) for 12 or 16 weeks. Metabolic parameters (body and AT weight, glucose tolerance test), AT dysfunction markers (AT remodeling, adipocyte size, crown-like structures), and outer hair cell function (distortion products otoacoustic emissions (DPOAEs) threshold and amplitudes) and integrity (hair cells cell count) were evaluated. Results: We observed that mice fed an HFD for 16 weeks showed a higher DPOAE threshold against stimuli at 16 KHz and a lower count of outer hair cells in the medial section of the cochlea. These results demonstrate a correlation between body and AT weight specifically at 16 weeks of treatment, the time point at which we observed a marked AT dysfunction. Conclusions: Taken together, our results suggest that obese mice with AT dysfunction have an altered auditory efferent system, characterized by a higher DPOAE threshold and a lower outer hair cell count in the medial section, which may impact signal transduction.
Background/Objectives: Obesity is a risk factor for several diseases; however, less has been researched about how diet-induced obesity may affect the auditory system. In this sense, the purpose of this study was to evaluate the effect of diet-induced obesity on the functionality and integrity of the outer hair cells, a key component of the organ of Corti, inside the cochlea. Furthermore, we hypothesized that adipose tissue (AT) status is associated with impaired outer hair cell auditory amplification in young C57BL/6 mice, contributing to increased vulnerability to hearing damage. Methods: Weaning male C57BL/6J mice (7 weeks old) weighing 22–23 g were divided into two diet groups: (i) a control diet or (ii) a high-fat diet (HFD) for 12 or 16 weeks. Metabolic parameters (body and AT weight, glucose tolerance test), AT dysfunction markers (AT remodeling, adipocyte size, crown-like structures), and outer hair cell function (distortion products otoacoustic emissions (DPOAEs) threshold and amplitudes) and integrity (hair cells cell count) were evaluated. Results: We observed that mice fed an HFD for 16 weeks showed a higher DPOAE threshold against stimuli at 16 KHz and a lower count of outer hair cells in the medial section of the cochlea. These results demonstrate a correlation between body and AT weight specifically at 16 weeks of treatment, the time point at which we observed a marked AT dysfunction. Conclusions: Taken together, our results suggest that obese mice with AT dysfunction have an altered auditory efferent system, characterized by a higher DPOAE threshold and a lower outer hair cell count in the medial section, which may impact signal transduction. Read More