Nutrients, Vol. 17, Pages 2014: From Fish Oil to Resolution: A Narrative Review on the Potential of SPM-Enriched Marine Oil for Exercise-Induced Muscle Damage Recovery

Nutrients, Vol. 17, Pages 2014: From Fish Oil to Resolution: A Narrative Review on the Potential of SPM-Enriched Marine Oil for Exercise-Induced Muscle Damage Recovery

Nutrients doi: 10.3390/nu17122014

Authors:
Leticia C. de Souza
Jose M. Moris
Paul M. Gordon
Jeffery L. Heileson
LesLee K. Funderburk

Exercise-induced muscle damage (EIMD) initiates an inflammatory response that is essential for tissue repair. However, when prolonged or excessive, this response can impair recovery and muscular performance. Specialized pro-resolving mediators (SPMs), derived from the metabolism of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), facilitate the resolution of inflammation without causing immunosuppression. Evidence from preclinical studies indicates that SPM administration accelerates muscle repair and functional recovery by enhancing the clearance of apoptotic cells, suppressing pro-inflammatory signaling and modulating macrophage polarization. However, translation to human applications remains limited as commercially available SPM-enriched marine oils do not contain active SPMs but rather their monohydroxylated precursors, including 14-Hydroxy-Docosahexaenoic Acid (14-HDHA), 17-Hydroxy-Docosahexaenoic Acid (17-HDHA), and 18-Hydroxy-Eicosapentaenoic Acid (18-HEPE) in addition to low doses of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Furthermore, the variable increases in circulating SPM concentrations as a result of dietary intake of EPA and DHA, whether from fish or fish oil supplements, and the wide diversity of SPM molecules (many of which remain under investigation), highlight the complexity of their structural and functional networks. While advances in lipidomics have identified SPMs and their pathway intermediates in human biological samples, further research is needed to determine optimal dosing strategies, delivery mechanisms, and the real impact of SPM-enriched marine oil on athletic performance and recovery. This narrative review examines the biological rationale and current evidence surrounding SPM-enriched marine oil supplementation and its potential to enhance muscle recovery following EIMD. By synthesizing findings from preclinical and human studies, the potential of SPM-enriched supplementation as a novel tool for optimizing performance recovery in athletic populations is reviewed to inform future research directions.

​Exercise-induced muscle damage (EIMD) initiates an inflammatory response that is essential for tissue repair. However, when prolonged or excessive, this response can impair recovery and muscular performance. Specialized pro-resolving mediators (SPMs), derived from the metabolism of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), facilitate the resolution of inflammation without causing immunosuppression. Evidence from preclinical studies indicates that SPM administration accelerates muscle repair and functional recovery by enhancing the clearance of apoptotic cells, suppressing pro-inflammatory signaling and modulating macrophage polarization. However, translation to human applications remains limited as commercially available SPM-enriched marine oils do not contain active SPMs but rather their monohydroxylated precursors, including 14-Hydroxy-Docosahexaenoic Acid (14-HDHA), 17-Hydroxy-Docosahexaenoic Acid (17-HDHA), and 18-Hydroxy-Eicosapentaenoic Acid (18-HEPE) in addition to low doses of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Furthermore, the variable increases in circulating SPM concentrations as a result of dietary intake of EPA and DHA, whether from fish or fish oil supplements, and the wide diversity of SPM molecules (many of which remain under investigation), highlight the complexity of their structural and functional networks. While advances in lipidomics have identified SPMs and their pathway intermediates in human biological samples, further research is needed to determine optimal dosing strategies, delivery mechanisms, and the real impact of SPM-enriched marine oil on athletic performance and recovery. This narrative review examines the biological rationale and current evidence surrounding SPM-enriched marine oil supplementation and its potential to enhance muscle recovery following EIMD. By synthesizing findings from preclinical and human studies, the potential of SPM-enriched supplementation as a novel tool for optimizing performance recovery in athletic populations is reviewed to inform future research directions. Read More

Full text for top nursing and allied health literature.

X