Nutrients, Vol. 17, Pages 2209: High-Fat Diet-Induced Diabetic Cardiomyopathy in Female Zebrafish: Cardiac Pathology and Functional Decline Mediated by Type 2 Diabetes

Nutrients, Vol. 17, Pages 2209: High-Fat Diet-Induced Diabetic Cardiomyopathy in Female Zebrafish: Cardiac Pathology and Functional Decline Mediated by Type 2 Diabetes

Nutrients doi: 10.3390/nu17132209

Authors:
Shuaiwang Huang
Zhanglin Chen
Haoming Li
Yunyi Zou
Bihan Wang
Wenjun Zhao
Lan Zheng
Zuoqiong Zhou
Xiyang Peng
Changfa Tang

Background: Diabetic cardiomyopathy (DCM) is characterized by progressive cardiac dysfunction, metabolic dysregulation, myocardial fibrosis, and mitochondrial impairment. Existing animal models, such as streptozotocin (STZ)-induced models, suffer from high mortality and fail to replicate chronic metabolic dysregulation induced by high-fat diets (HFD), whereas HFD or HFD/STZ-combined rodent models require high maintenance costs. This study aimed to establish a zebrafish HFD-DCM model to facilitate mechanistic exploration and drug discovery. Methods: Eighty wild-type female zebrafish were divided into normal diet (N, 6% fat) and HFD (H, 24% fat) groups and fed the diet for 8 weeks. Metabolic phenotypes were evaluated using intraperitoneal glucose tolerance tests and insulin level analysis. Cardiac function was assessed by using echocardiography (ejection fraction, E peak). Structural, metabolic, and oxidative stress alterations were analyzed by histopathology (H&E, Masson, and Oil Red O staining), molecular assays (RT-qPCR, Western blotting), and mitochondrial structure/function evaluations (respiratory chain activity, transmission electron microscopy, and DHE staining). Results: HFD-fed zebrafish developed obesity, insulin resistance, and impaired glucose tolerance. Echocardiography revealed cardiac hypertrophy, reduced ejection fraction, and diastolic dysfunction. Excessive lipid accumulation, upregulated fibrosis/inflammatory markers, impaired mitochondrial respiration, elevated reactive oxygen species levels, and a disrupted redox balance were observed. Conclusions: We established a female zebrafish HFD model that recapitulates human DCM features, including hypertrophy, metabolic dysregulation, fibrosis, inflammation, and mitochondrial dysfunction. This model offers novel insights into DCM pathogenesis and serves as a valuable platform for mechanistic studies and targeted drug screening.

​Background: Diabetic cardiomyopathy (DCM) is characterized by progressive cardiac dysfunction, metabolic dysregulation, myocardial fibrosis, and mitochondrial impairment. Existing animal models, such as streptozotocin (STZ)-induced models, suffer from high mortality and fail to replicate chronic metabolic dysregulation induced by high-fat diets (HFD), whereas HFD or HFD/STZ-combined rodent models require high maintenance costs. This study aimed to establish a zebrafish HFD-DCM model to facilitate mechanistic exploration and drug discovery. Methods: Eighty wild-type female zebrafish were divided into normal diet (N, 6% fat) and HFD (H, 24% fat) groups and fed the diet for 8 weeks. Metabolic phenotypes were evaluated using intraperitoneal glucose tolerance tests and insulin level analysis. Cardiac function was assessed by using echocardiography (ejection fraction, E peak). Structural, metabolic, and oxidative stress alterations were analyzed by histopathology (H&E, Masson, and Oil Red O staining), molecular assays (RT-qPCR, Western blotting), and mitochondrial structure/function evaluations (respiratory chain activity, transmission electron microscopy, and DHE staining). Results: HFD-fed zebrafish developed obesity, insulin resistance, and impaired glucose tolerance. Echocardiography revealed cardiac hypertrophy, reduced ejection fraction, and diastolic dysfunction. Excessive lipid accumulation, upregulated fibrosis/inflammatory markers, impaired mitochondrial respiration, elevated reactive oxygen species levels, and a disrupted redox balance were observed. Conclusions: We established a female zebrafish HFD model that recapitulates human DCM features, including hypertrophy, metabolic dysregulation, fibrosis, inflammation, and mitochondrial dysfunction. This model offers novel insights into DCM pathogenesis and serves as a valuable platform for mechanistic studies and targeted drug screening. Read More

Full text for top nursing and allied health literature.

X