Nutrients, Vol. 17, Pages 2222: A 14-Day Plant-Based Dietary Intervention Modulates the Plasma Levels of Rheumatoid Arthritis-Associated MicroRNAs: A Bioinformatics-Guided Pilot Study
Nutrients doi: 10.3390/nu17132222
Authors:
		Mario Peña-Peña
		Elyzabeth Bermúdez-Benítez
		José L. Sánchez-Gloria
		Karla M. Rada
		Mauricio Mora-Ramírez
		Luis M. Amezcua-Guerra
		Martha A. Ballinas-Verdugo
		Claudia Tavera-Alonso
		Carlos A. Guzmán-Martín
		Leonor Jacobo-Albavera
		Aarón Domínguez-López
		Rogelio F. Jiménez-Ortega
		Luis H. Silveira
		Laura A. Martínez-Martínez
		Fausto Sánchez-Muñoz
		
Background/Objectives: MicroRNAs (miRNAs) have emerged as molecular mediators involved in the pathogenesis of rheumatoid arthritis (RA). Given the influence of diet on gene expression and inflammation, plant-based diets represent a potential non-pharmacological strategy for modulating disease activity. This study aimed to explore and validate, through a bioinformatic-guided pilot approach, the regulation of miRNAs associated with RA in response to a 14-day plant-based dietary intervention. Methods: Candidate miRNAs were identified through differential expression analysis of the GSE124373 dataset using GEO2R and were further supported by a literature review. Target gene prediction and functional enrichment analyses were conducted to assess the biological relevance of these findings. Twenty-three RA patients followed a plant-based diet for 14 days. The clinical activity (DAS28-CRP), biochemical markers, and plasma expression of five selected miRNAs (miR-26a-5p, miR-125a-5p, miR-125b-5p, miR-146a-5p, and miR-155-5p) were evaluated before and after the intervention using RT-qPCR. Results: Significant reductions were observed in DAS28-CRP scores, C-reactive protein, glucose, and lipid levels after 14 days of intervention. Three of the five miRNAs (miR-26a-5p, miR-125a-5p, and miR-155-5p) were significantly downregulated post-intervention. Bioinformatic analyses indicated that these miRNAs regulate immune–inflammatory pathways relevant to RA pathogenesis. Conclusions: This pilot study suggests that a short-term plant-based dietary intervention may modulate circulating miRNAs and improve clinical and biochemical parameters in RA patients. These findings support further research into dietary strategies as complementary approaches for RA management.
Background/Objectives: MicroRNAs (miRNAs) have emerged as molecular mediators involved in the pathogenesis of rheumatoid arthritis (RA). Given the influence of diet on gene expression and inflammation, plant-based diets represent a potential non-pharmacological strategy for modulating disease activity. This study aimed to explore and validate, through a bioinformatic-guided pilot approach, the regulation of miRNAs associated with RA in response to a 14-day plant-based dietary intervention. Methods: Candidate miRNAs were identified through differential expression analysis of the GSE124373 dataset using GEO2R and were further supported by a literature review. Target gene prediction and functional enrichment analyses were conducted to assess the biological relevance of these findings. Twenty-three RA patients followed a plant-based diet for 14 days. The clinical activity (DAS28-CRP), biochemical markers, and plasma expression of five selected miRNAs (miR-26a-5p, miR-125a-5p, miR-125b-5p, miR-146a-5p, and miR-155-5p) were evaluated before and after the intervention using RT-qPCR. Results: Significant reductions were observed in DAS28-CRP scores, C-reactive protein, glucose, and lipid levels after 14 days of intervention. Three of the five miRNAs (miR-26a-5p, miR-125a-5p, and miR-155-5p) were significantly downregulated post-intervention. Bioinformatic analyses indicated that these miRNAs regulate immune–inflammatory pathways relevant to RA pathogenesis. Conclusions: This pilot study suggests that a short-term plant-based dietary intervention may modulate circulating miRNAs and improve clinical and biochemical parameters in RA patients. These findings support further research into dietary strategies as complementary approaches for RA management. Read More
