Nutrients, Vol. 17, Pages 2492: Autonomic and Neuroendocrine Reactivity to VR Game Exposure in Children and Adolescents with Obesity: A Factor Analytic Approach to Physiological Reactivity and Eating Behavior
Nutrients doi: 10.3390/nu17152492
Authors:
Cristiana Amalia Onita
Daniela-Viorelia Matei
Laura-Mihaela Trandafir
Diana Petrescu-Miron
Calin Corciova
Robert Fuior
Lorena-Mihaela Manole
Bogdan-Mircea Mihai
Cristina-Gena Dascalu
Monica Tarcea
Stéphane Bouchard
Veronica Mocanu
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with obesity (15 boys and 15 girls), aged 8 to 17 years. The VR protocol consisted of two consecutive phases: a 5 min relaxation phase using the Forest application and a 5 min stimulation phase using a cognitively engaging VR game designed to elicit social-emotional stress. Physiological responses were measured using heart rate variability (HRV) indices and salivary stress biomarkers, including cortisol and alpha amylase. Subjective stress and eating responses were assessed via visual analogue scales (VAS) administered immediately post-exposure. The Three-Factor Eating Questionnaire (TFEQ-R21C) was used to evaluate cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE). Results: The cortisol reactivity was blunted and may reflect both the attenuated HPA axis responsiveness characteristic of pediatric obesity and the moderate psychological challenge of the VR stressor used in this study. Two distinct autonomic response patterns were identified via exploratory factor analysis: (1) parasympathetic reactivity, associated with increased RMSSD and SDNN and decreased LF/HF, and (2) sympathetic activation, associated with increased heart rate and alpha-amylase levels and reduced RR intervals. Parasympathetic reactivity was correlated with lower perceived stress and anxiety, but also paradoxically with higher uncontrolled eating (UE). In contrast, sympathetic activation was associated with greater cognitive restraint (CR) and higher anxiety ratings. Conclusions: This study demonstrates that immersive VR game exposure elicits measurable autonomic and subjective stress responses in children and adolescents with obesity, and that individual differences in physiological reactivity are relevantly associated with eating behavior traits. The findings suggest that parasympathetic and sympathetic profiles may represent distinct behavioral patterns with implications for targeted intervention.
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with obesity (15 boys and 15 girls), aged 8 to 17 years. The VR protocol consisted of two consecutive phases: a 5 min relaxation phase using the Forest application and a 5 min stimulation phase using a cognitively engaging VR game designed to elicit social-emotional stress. Physiological responses were measured using heart rate variability (HRV) indices and salivary stress biomarkers, including cortisol and alpha amylase. Subjective stress and eating responses were assessed via visual analogue scales (VAS) administered immediately post-exposure. The Three-Factor Eating Questionnaire (TFEQ-R21C) was used to evaluate cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE). Results: The cortisol reactivity was blunted and may reflect both the attenuated HPA axis responsiveness characteristic of pediatric obesity and the moderate psychological challenge of the VR stressor used in this study. Two distinct autonomic response patterns were identified via exploratory factor analysis: (1) parasympathetic reactivity, associated with increased RMSSD and SDNN and decreased LF/HF, and (2) sympathetic activation, associated with increased heart rate and alpha-amylase levels and reduced RR intervals. Parasympathetic reactivity was correlated with lower perceived stress and anxiety, but also paradoxically with higher uncontrolled eating (UE). In contrast, sympathetic activation was associated with greater cognitive restraint (CR) and higher anxiety ratings. Conclusions: This study demonstrates that immersive VR game exposure elicits measurable autonomic and subjective stress responses in children and adolescents with obesity, and that individual differences in physiological reactivity are relevantly associated with eating behavior traits. The findings suggest that parasympathetic and sympathetic profiles may represent distinct behavioral patterns with implications for targeted intervention. Read More