Nutrients, Vol. 17, Pages 2510: How Accurate Is Multiple Imputation for Nutrient Intake Estimation? Insights from ASA24 Data
Nutrients doi: 10.3390/nu17152510
Authors:
Nicolas Woods
Jason Gilliland
Louise W. McEachern
Colleen O’Connor
Saverio Stranges
Shaun Doherty
Jamie A. Seabrook
Background/Objectives: Accurate dietary assessment is crucial for nutritional epidemiology, but tools like 24 h recalls (24HRs) face challenges with missing or implausible data. The Automated Self-Administered 24 h Dietary Assessment Tool (ASA24) facilitates large-scale data collection, but its lack of interviewer input may lead to implausible dietary recalls (IDRs), affecting data integrity. Multiple imputation (MI) is commonly used to handle missing data, but its effectiveness in high-variability dietary data is uncertain. This study aims to assess MI’s accuracy in estimating nutrient intake under varying levels of missing data. Methods: Data from 24HRs completed by 743 adolescents (ages 13–18) in Ontario, Canada, were used. Implausible recalls were excluded based on nutrient thresholds, creating a cleaned reference dataset. Missing data were simulated at 10%, 20%, and 40% deletion rates. MI via chained equations was applied, incorporating demographic and psychosocial variables as predictors. Imputed values were compared to actual values using Spearman’s correlation and accuracy within ±10% of true values. Results: Spearman’s rho values between the imputed and actual nutrient intakes were weak (mean ρ ≈ 0.24). Accuracy within ±10% was low for most nutrients (typically < 25%), with no clear trend by missingness level. Diet quality scores showed slightly higher accuracy, but values were still under 30%. Conclusions: MI performed poorly in estimating individual nutrient intake in this adolescent sample. While MI may preserve sample characteristics, it is unreliable for accurate nutrient estimates and should be used cautiously. Future studies should focus on improving data quality and exploring better imputation methods.
Background/Objectives: Accurate dietary assessment is crucial for nutritional epidemiology, but tools like 24 h recalls (24HRs) face challenges with missing or implausible data. The Automated Self-Administered 24 h Dietary Assessment Tool (ASA24) facilitates large-scale data collection, but its lack of interviewer input may lead to implausible dietary recalls (IDRs), affecting data integrity. Multiple imputation (MI) is commonly used to handle missing data, but its effectiveness in high-variability dietary data is uncertain. This study aims to assess MI’s accuracy in estimating nutrient intake under varying levels of missing data. Methods: Data from 24HRs completed by 743 adolescents (ages 13–18) in Ontario, Canada, were used. Implausible recalls were excluded based on nutrient thresholds, creating a cleaned reference dataset. Missing data were simulated at 10%, 20%, and 40% deletion rates. MI via chained equations was applied, incorporating demographic and psychosocial variables as predictors. Imputed values were compared to actual values using Spearman’s correlation and accuracy within ±10% of true values. Results: Spearman’s rho values between the imputed and actual nutrient intakes were weak (mean ρ ≈ 0.24). Accuracy within ±10% was low for most nutrients (typically < 25%), with no clear trend by missingness level. Diet quality scores showed slightly higher accuracy, but values were still under 30%. Conclusions: MI performed poorly in estimating individual nutrient intake in this adolescent sample. While MI may preserve sample characteristics, it is unreliable for accurate nutrient estimates and should be used cautiously. Future studies should focus on improving data quality and exploring better imputation methods. Read More