Nutrients, Vol. 17, Pages 2741: Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI

Nutrients, Vol. 17, Pages 2741: Lactase Persistence-Associated rs4988235 Polymorphism: A Novel Genetic Link to Cardiovascular Risk via Modulation of ApoB100 and ApoAI

Nutrients doi: 10.3390/nu17172741

Authors:
Nihad Kharrat Helu
Habib Al Ashkar
Nora Kovacs
Roza Adany
Peter Piko

Background/Objectives: As part of the human adaptation to dairy consumption, the presence of the rs4988235-T variant in the MCM6 gene primarily determines lactase persistence in adult European populations, increasing the expression of the lactase-encoding LCT gene. Carriers of the C/C variant are lactose intolerant, while carriers of the T/T or T/C variant have persistent lactase enzyme activity and are able to digest lactose in adulthood. While the association between lactose intolerance and increased cardiovascular risk (CVR) is well-known, the underlying causes have only been partly explored. The present study aimed to investigate the association of rs4988235 polymorphism with significant lipids affecting cardiovascular health and estimated CVR. Methods: The rs4988235 polymorphism was genotyped in 397 subjects from the general Hungarian population and 368 individuals from the Roma population. To characterize the overall lipid profile, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), apolipoprotein AI (ApoAI), and apolipoprotein B100 (ApoB100) levels were measured, and their ratios (TG/HDL-C, LDL-C/HDL-C, and ApoB100/ApoAI) were calculated. Cardiovascular risk was estimated using the Framingham Risk Score (FRS), Pooled Cohort Equations (PCE), Revised Pooled Cohort Equations (RPCE), and the Systematic Coronary Risk Evaluations (SCORE and SCORE2) algorithms. Adjusted linear and logistic regression analyses were performed, with p < 0.05 considered significant. Results: The Roma population had a significantly higher prevalence of the C/C genotype than the general population (65.5% vs. 40.3%, respectively). The results of the adjusted linear regression analysis showed a significant association between the C/C genotype and higher LDL-C level (B = 0.126, p = 0.047) and ApoB100 level (B = 0.046, p = 0.013), as well as a higher LDL-C/HDL-C ratio (B = 0.174, p = 0.021) and a higher ApoB100/ApoAI ratio (B = 0.045, p = 0.002), as well as a lower HDL-C level (B = −0.041, p = 0.049). The C/C genotype was also significantly associated with an increased cardiovascular risk (CVR) as estimated by the SCORE (B = 0.235, p = 0.034), SCORE2 (B = 0.414, p = 0.009), PCE (B = 0.536, p = 0.008), and RPCE (B = 0.289, p = 0.045) but not the FRS. After adjusting the statistical model further for ApoAI and ApoB100 levels, the significant correlation with the risk estimation algorithms disappeared (SCORE: p = 0.099; SCORE2: p = 0.283; PCE: p = 0.255; and RPCE: p = 0.370). Conclusions: Our results suggest that the C/C genotype of rs4988235 is associated with significantly higher ApoB100 and lower ApoAI levels and consequently higher ApoB100/ApoAI ratios, potentially contributing to an increased risk of cardiovascular disease. The results of the statistical analyses suggest that the association between lactose intolerant genotype and cardiovascular risk may be mediated indirectly via modification of the apolipoprotein profile.

​Background/Objectives: As part of the human adaptation to dairy consumption, the presence of the rs4988235-T variant in the MCM6 gene primarily determines lactase persistence in adult European populations, increasing the expression of the lactase-encoding LCT gene. Carriers of the C/C variant are lactose intolerant, while carriers of the T/T or T/C variant have persistent lactase enzyme activity and are able to digest lactose in adulthood. While the association between lactose intolerance and increased cardiovascular risk (CVR) is well-known, the underlying causes have only been partly explored. The present study aimed to investigate the association of rs4988235 polymorphism with significant lipids affecting cardiovascular health and estimated CVR. Methods: The rs4988235 polymorphism was genotyped in 397 subjects from the general Hungarian population and 368 individuals from the Roma population. To characterize the overall lipid profile, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), apolipoprotein AI (ApoAI), and apolipoprotein B100 (ApoB100) levels were measured, and their ratios (TG/HDL-C, LDL-C/HDL-C, and ApoB100/ApoAI) were calculated. Cardiovascular risk was estimated using the Framingham Risk Score (FRS), Pooled Cohort Equations (PCE), Revised Pooled Cohort Equations (RPCE), and the Systematic Coronary Risk Evaluations (SCORE and SCORE2) algorithms. Adjusted linear and logistic regression analyses were performed, with p < 0.05 considered significant. Results: The Roma population had a significantly higher prevalence of the C/C genotype than the general population (65.5% vs. 40.3%, respectively). The results of the adjusted linear regression analysis showed a significant association between the C/C genotype and higher LDL-C level (B = 0.126, p = 0.047) and ApoB100 level (B = 0.046, p = 0.013), as well as a higher LDL-C/HDL-C ratio (B = 0.174, p = 0.021) and a higher ApoB100/ApoAI ratio (B = 0.045, p = 0.002), as well as a lower HDL-C level (B = −0.041, p = 0.049). The C/C genotype was also significantly associated with an increased cardiovascular risk (CVR) as estimated by the SCORE (B = 0.235, p = 0.034), SCORE2 (B = 0.414, p = 0.009), PCE (B = 0.536, p = 0.008), and RPCE (B = 0.289, p = 0.045) but not the FRS. After adjusting the statistical model further for ApoAI and ApoB100 levels, the significant correlation with the risk estimation algorithms disappeared (SCORE: p = 0.099; SCORE2: p = 0.283; PCE: p = 0.255; and RPCE: p = 0.370). Conclusions: Our results suggest that the C/C genotype of rs4988235 is associated with significantly higher ApoB100 and lower ApoAI levels and consequently higher ApoB100/ApoAI ratios, potentially contributing to an increased risk of cardiovascular disease. The results of the statistical analyses suggest that the association between lactose intolerant genotype and cardiovascular risk may be mediated indirectly via modification of the apolipoprotein profile. Read More

Full text for top nursing and allied health literature.

X