Nutrients, Vol. 17, Pages 2844: Modulation of the Gut Microbiota by Nopalea cochenillifera (Prickly Pear Cactus) Contributes to Improved Lipid Metabolism and Immune Function
Nutrients doi: 10.3390/nu17172844
Authors:
Sayaka Yokoyama
Amane Kikuchi
Hideaki Takahashi
Hinako Ushimaru
Hibiki Yamaguchi
Chikako Yamada
Kotoyo Fujiki
Hana Kozai
Suzuno Ota
Tadashi Fujii
Yoshiki Hirooka
Takumi Tochio
Mamoru Tanaka
Background/Objectives: Nopalea cochenillifera (L.) Salm-Dyck cladodes are rich in dietary fiber, polyphenols, and minerals, which are known to exert antioxidant and immunomodulatory effects. However, the mechanisms and active constituents have not been fully elucidated. In this study, we investigated the effects of continuous N. cochenillifera consumption on lipid metabolism, immune function, and the gut microbiota in mice. Methods: The feed was made using freeze-dried and powdered cladodes of N. cochenillifera. Male C57BL/6J mice were assigned to four groups: control diet (C), control diet plus 10% N. cochenillifera (CN), high-fat diet (FC), and high-fat diet plus 10% N. cochenillifera (FN). Results: Cactus supplementation reduced the body and liver weights that were elevated by the high-fat diet. Serum total cholesterol and free fatty acids were increased in the FC group compared with the C group, while cactus intake lowered these levels and enhanced fecal cholesterol excretion. Cactus consumption also elevated fecal total IgA and mucin contents. IL-4 expression in Peyer’s patches was significantly increased in the FN group compared with the FC group. Gut microbiota analysis showed significant differences in β-diversity, along with increased α-diversity and higher abundance of Lachnospiraceae, following cactus intake. Conclusions: These findings suggest that N. cochenillifera intake increases gut microbiota diversity, which enhances intestinal barrier function and thereby contributes to improved lipid metabolism and immune regulation.
Background/Objectives: Nopalea cochenillifera (L.) Salm-Dyck cladodes are rich in dietary fiber, polyphenols, and minerals, which are known to exert antioxidant and immunomodulatory effects. However, the mechanisms and active constituents have not been fully elucidated. In this study, we investigated the effects of continuous N. cochenillifera consumption on lipid metabolism, immune function, and the gut microbiota in mice. Methods: The feed was made using freeze-dried and powdered cladodes of N. cochenillifera. Male C57BL/6J mice were assigned to four groups: control diet (C), control diet plus 10% N. cochenillifera (CN), high-fat diet (FC), and high-fat diet plus 10% N. cochenillifera (FN). Results: Cactus supplementation reduced the body and liver weights that were elevated by the high-fat diet. Serum total cholesterol and free fatty acids were increased in the FC group compared with the C group, while cactus intake lowered these levels and enhanced fecal cholesterol excretion. Cactus consumption also elevated fecal total IgA and mucin contents. IL-4 expression in Peyer’s patches was significantly increased in the FN group compared with the FC group. Gut microbiota analysis showed significant differences in β-diversity, along with increased α-diversity and higher abundance of Lachnospiraceae, following cactus intake. Conclusions: These findings suggest that N. cochenillifera intake increases gut microbiota diversity, which enhances intestinal barrier function and thereby contributes to improved lipid metabolism and immune regulation. Read More