Nutrients, Vol. 17, Pages 2927: Lacticaseibacillus rhamnosus Probio-M9 Alters the Gut Microbiota and Mitigates Pulmonary Hypertension in a Rat Model
Nutrients doi: 10.3390/nu17182927
Authors:
Zhixin Zhao
Gaopeng Li
Kiyomi Ohmichi
Xiaodong Li
Feiyan Zhao
Kaori Ishikawa
Ryou Ishikawa
Kazufumi Nakamura
Naoya Yokota
Zhihong Sun
Lin Hai Kurahara
Background: Intestinal microbiota plays an important role in the progression of pulmonary hypertension (PH). Colostrum-derived Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) has shown protective effects against inflammation and remodeling. We investigated whether Probio-M9 supplementation could improve the pathology of PH. Methods: The monocrotaline (MCT)-induced PH model rats are created followed by Probio-M9 treatment. Microbiota and pathological analyses were performed to investigate the therapeutic effects of Probio-M9. Results: Probio-M9 significantly suppressed cardiovascular remodeling and reduced mortality in rats. Analysis of the fecal microbiota revealed that Probio-M9 significantly altered the gut microbiota of MCT model rats. Specifically, Alistipes sp009774895 and Duncaniella muris populations increased, whereas Limosilactobacillus reuteri_D, Ligilactobacillus apodeme and Monoglobus sp900542675 decreased compared to those in the MCT group. Focusing on the expression of GPNMB in macrophages and the localization of CD44, we found that the number of these cells increased in the MCT group but significantly decreased with Probio-M9 treatment. In lung tissue from PH patients, more GPNMB-positive macrophages were found than non-PH lungs, and an increase in CD44-positive cells was confirmed in the vicinity of GPNMB. Conclusions: Probio-M9 had a significant impact on the intestinal microbiota and GPNMB/CD44 positive cells in the lungs of PH rats.
Background: Intestinal microbiota plays an important role in the progression of pulmonary hypertension (PH). Colostrum-derived Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) has shown protective effects against inflammation and remodeling. We investigated whether Probio-M9 supplementation could improve the pathology of PH. Methods: The monocrotaline (MCT)-induced PH model rats are created followed by Probio-M9 treatment. Microbiota and pathological analyses were performed to investigate the therapeutic effects of Probio-M9. Results: Probio-M9 significantly suppressed cardiovascular remodeling and reduced mortality in rats. Analysis of the fecal microbiota revealed that Probio-M9 significantly altered the gut microbiota of MCT model rats. Specifically, Alistipes sp009774895 and Duncaniella muris populations increased, whereas Limosilactobacillus reuteri_D, Ligilactobacillus apodeme and Monoglobus sp900542675 decreased compared to those in the MCT group. Focusing on the expression of GPNMB in macrophages and the localization of CD44, we found that the number of these cells increased in the MCT group but significantly decreased with Probio-M9 treatment. In lung tissue from PH patients, more GPNMB-positive macrophages were found than non-PH lungs, and an increase in CD44-positive cells was confirmed in the vicinity of GPNMB. Conclusions: Probio-M9 had a significant impact on the intestinal microbiota and GPNMB/CD44 positive cells in the lungs of PH rats. Read More