Nutrients, Vol. 17, Pages 3418: Dietary Fat Intake and Indices of Blood Profiles in High-Performance Athletes: An Exploratory Study Focusing on Platelet Variables

Nutrients, Vol. 17, Pages 3418: Dietary Fat Intake and Indices of Blood Profiles in High-Performance Athletes: An Exploratory Study Focusing on Platelet Variables

Nutrients doi: 10.3390/nu17213418

Authors:
Marius Baranauskas
Ingrida Kupčiūnaitė
Jurgita Lieponienė
Rimantas Stukas

Background/Objectives: There is a sudden and noticeably increasing focus on naturally found antiplatelet inhibitors that humans can use habitually. Given that athletes receive annual training with periods of recovery that are not always suitably adapted to the workload, this study aimed to explore the association between dietary fat intakes and the indices of blood profiles, concentrating on platelet variables in a sample of high-performance athletes. Methods: The sample encompassed 19.8 ± 2.2-year-old Lithuanian high-performance athletes (n = 82). The assessment of the nutritional profile of study participants was performed using a 3-day food record approach. In laboratory settings, the hematology profile of athletes was assessed via the Nihon Khoden automated hematology analyzer. Results: The recorded mean consumption of energy, carbohydrates, protein, and fat in elite athletes was 49 kcal/kg/day, 5.4 g/kg/day, 1.6 g/kg/day, and 40.3% of energy intake (EI), respectively. The study highlighted the excessive consumption of saturated fatty acids (FA) (13.4–14.3% of EI) and dietary cholesterol (698–982 mg/day). Also, considering that the ideal human omega-6 to omega-3 FA ratio is commonly deemed to be between 1:1 and 4:1, an athlete’s ‘Western diet’ was heavily skewed with a ratio fluctuating from 18.9:1 to 19:4 in favor of omega-6 FA. Furthermore, the study found that the outcomes related to slightly higher levels of blood platelet counts and plateletcrit, however, being within normal limits, were associated with a higher intake of omega-6 FA (adjusted odds ratio (AOR) 9.5, 95% confidence interval (CI) 1.2; 9.9, p = 0.029). A higher platelet-to-hemoglobin ratio as a novel indirect blood-based biomarker pronouncing the potential inflammatory processes in the body revealed the reverse relationship of higher intake levels of dietary omega-3 FA (AOR 6.7, 95% CI 1.3; 12.2, p = 0.029), omega-6 FA (AOR 6.2, 95% CI 2.7; 11.5, p = 0.009), and saturated FA (AOR 8.5, 95% CI 1.5; 9.1, p = 0.020) among elite athletes. Conclusions: The prospect of personalized nutrition targeted at the professional athletes’ segment may provide an innovative opportunity to increase athletes’ capacity to manage the platelet function via diet while stressing the importance of further empirical experimental research in this dynamic and vital biomedical field.

​Background/Objectives: There is a sudden and noticeably increasing focus on naturally found antiplatelet inhibitors that humans can use habitually. Given that athletes receive annual training with periods of recovery that are not always suitably adapted to the workload, this study aimed to explore the association between dietary fat intakes and the indices of blood profiles, concentrating on platelet variables in a sample of high-performance athletes. Methods: The sample encompassed 19.8 ± 2.2-year-old Lithuanian high-performance athletes (n = 82). The assessment of the nutritional profile of study participants was performed using a 3-day food record approach. In laboratory settings, the hematology profile of athletes was assessed via the Nihon Khoden automated hematology analyzer. Results: The recorded mean consumption of energy, carbohydrates, protein, and fat in elite athletes was 49 kcal/kg/day, 5.4 g/kg/day, 1.6 g/kg/day, and 40.3% of energy intake (EI), respectively. The study highlighted the excessive consumption of saturated fatty acids (FA) (13.4–14.3% of EI) and dietary cholesterol (698–982 mg/day). Also, considering that the ideal human omega-6 to omega-3 FA ratio is commonly deemed to be between 1:1 and 4:1, an athlete’s ‘Western diet’ was heavily skewed with a ratio fluctuating from 18.9:1 to 19:4 in favor of omega-6 FA. Furthermore, the study found that the outcomes related to slightly higher levels of blood platelet counts and plateletcrit, however, being within normal limits, were associated with a higher intake of omega-6 FA (adjusted odds ratio (AOR) 9.5, 95% confidence interval (CI) 1.2; 9.9, p = 0.029). A higher platelet-to-hemoglobin ratio as a novel indirect blood-based biomarker pronouncing the potential inflammatory processes in the body revealed the reverse relationship of higher intake levels of dietary omega-3 FA (AOR 6.7, 95% CI 1.3; 12.2, p = 0.029), omega-6 FA (AOR 6.2, 95% CI 2.7; 11.5, p = 0.009), and saturated FA (AOR 8.5, 95% CI 1.5; 9.1, p = 0.020) among elite athletes. Conclusions: The prospect of personalized nutrition targeted at the professional athletes’ segment may provide an innovative opportunity to increase athletes’ capacity to manage the platelet function via diet while stressing the importance of further empirical experimental research in this dynamic and vital biomedical field. Read More

Full text for top nursing and allied health literature.

X