Nutrients, Vol. 18, Pages 174: Multi-Strain Probiotic Improves Tryptophan Metabolism and Symptoms in Chronic Fatigue Syndrome Patients with Co-Occurring Irritable Bowel Syndrome: An Open-Label Pilot Study
Nutrients doi: 10.3390/nu18010174
Authors:
Cezary Chojnacki
Marta Mędrek-Socha
Jan Chojnacki
Anita Gąsiorowska
Ewa Walecka-Kapica
Michal Bijak
Karolina Przybylowska-Sygut
Tomasz Poplawski
Background/Objectives: Gut dysbiosis in Chronic Fatigue Syndrome (CFS) drives low-grade inflammation and shifts tryptophan metabolism toward neurotoxic pathways. The causal link between bacterial translocation, kynurenine pathway dysregulation, and symptom severity remains under-defined. We evaluated the impact of a high-concentration multi-strain probiotic on the “gut-kynurenine axis” and clinical status in CFS patients with co-morbid IBS-U and confirmed dysbiosis. Methods: Forty female patients with confirmed dysbiosis (GA-map™ Dysbiosis Index > 2) received the CDS22 formula (450 billion CFU/day) for 12 weeks. We compared urinary tryptophan metabolite profiles (LC-MS/MS), gut dysbiosis markers (3-indoxyl sulfate), and fatigue severity (FSS) against 40 age-matched healthy controls. Results: Baseline analysis revealed profound metabolic perturbations: elevated bacterial proteolytic markers (3-IS), substrate depletion (low tryptophan), and a neurotoxic signature (high quinolinic acid [QA], low kynurenic acid [KYNA]). Following the intervention, fatigue scores declined by 40.3%, with 97.5% of patients reaching the remission threshold (FSS < 36). Biochemically, 3-IS levels decreased to the range observed in healthy controls and attenuated xanthurenic acid levels. Although absolute QA concentrations remained elevated compared to controls, the neuroprotective KYNA/QA ratio increased significantly (+45%). Increased systemic tryptophan availability correlated directly with clinical symptom reduction (Spearman’s rho = −0.36, p = 0.024). Conclusions: The CDS22 formulation was associated with a restoration of intestinal eubiosis and functional tryptophan partitioning. Clinical remission coincides with a metabolic shift favoring neuroprotection (increased KYNA/QA ratio), validating the gut–kynurenine axis as a modifiable therapeutic target. Peripheral metabolic improvement relative to the healthy baseline appeared sufficient for symptom relief in this specific phenotype, despite incomplete clearance of neurotoxic metabolites.
Background/Objectives: Gut dysbiosis in Chronic Fatigue Syndrome (CFS) drives low-grade inflammation and shifts tryptophan metabolism toward neurotoxic pathways. The causal link between bacterial translocation, kynurenine pathway dysregulation, and symptom severity remains under-defined. We evaluated the impact of a high-concentration multi-strain probiotic on the “gut-kynurenine axis” and clinical status in CFS patients with co-morbid IBS-U and confirmed dysbiosis. Methods: Forty female patients with confirmed dysbiosis (GA-map™ Dysbiosis Index > 2) received the CDS22 formula (450 billion CFU/day) for 12 weeks. We compared urinary tryptophan metabolite profiles (LC-MS/MS), gut dysbiosis markers (3-indoxyl sulfate), and fatigue severity (FSS) against 40 age-matched healthy controls. Results: Baseline analysis revealed profound metabolic perturbations: elevated bacterial proteolytic markers (3-IS), substrate depletion (low tryptophan), and a neurotoxic signature (high quinolinic acid [QA], low kynurenic acid [KYNA]). Following the intervention, fatigue scores declined by 40.3%, with 97.5% of patients reaching the remission threshold (FSS < 36). Biochemically, 3-IS levels decreased to the range observed in healthy controls and attenuated xanthurenic acid levels. Although absolute QA concentrations remained elevated compared to controls, the neuroprotective KYNA/QA ratio increased significantly (+45%). Increased systemic tryptophan availability correlated directly with clinical symptom reduction (Spearman’s rho = −0.36, p = 0.024). Conclusions: The CDS22 formulation was associated with a restoration of intestinal eubiosis and functional tryptophan partitioning. Clinical remission coincides with a metabolic shift favoring neuroprotection (increased KYNA/QA ratio), validating the gut–kynurenine axis as a modifiable therapeutic target. Peripheral metabolic improvement relative to the healthy baseline appeared sufficient for symptom relief in this specific phenotype, despite incomplete clearance of neurotoxic metabolites. Read More
