Nutrients, Vol. 18, Pages 181: Effects of Mixed Fruits and Berries on Ameliorating Gut Microbiota and Hepatic Alterations Induced by Cafeteria Diet

Nutrients, Vol. 18, Pages 181: Effects of Mixed Fruits and Berries on Ameliorating Gut Microbiota and Hepatic Alterations Induced by Cafeteria Diet

Nutrients doi: 10.3390/nu18020181

Authors:
Rawan Al Hazaimeh
Louis Shackelford
Judith Boateng

Background/Objectives: The study investigated the potential of mixed fruits and berries (MFB) as a dietary intervention to mitigate cafeteria (CAF) diet-induced gut microbiome dysbiosis and hepatic dysfunction associated with metabolic syndrome and steatohepatitis (MASH) in an adolescent rat model. Methods: Forty-eight adolescent male Sprague-Dawley rats (n = 3 cages per group (two rats per cage)) were divided into eight experimental groups, where NC received the normal AIN-93G basal diet, PC received the CAF diet and normal AIN-93G basal diet, T1 and T2 received MFB supplementation (3% and 6% levels) without CAF exposure, P1 and P2 received a MFB (3% and 6% levels) supplementation initiated at the onset of CAF feeding, and I1 and I2 received MFB supplementation initiated 2 weeks after CAF feeding. After 6 weeks, cecal 16S rRNA, hepatic histopathology, Oil Red O staining, and metabolic dysfunction-associated steatotic liver disease (MASLD)-related biomarkers (liver enzymes, alanine aminotransferase (ALT), and aspartate aminotransferase (AST)) were analyzed. Results: AST: ALT ratio was the highest in the PC group (3.63, p < 0.05) compared to the MFB groups. Oil Red O staining showed lower hepatic lipid accumulation, and histological analysis demonstrated a marked reduction in portal inflammatory cell infiltration in MFB. Alpha diversity (Simpson Index) decreased in PC (Kruskal–Wallis, p = 0.043). CAF increased Lactobacillus johnsonii (+75%, p < 0.05), while reducing L. murinus and L. intestinalis (~90%, p < 0.05). MFB supplementation restored Bifidobacterium Pseudolongum and increased Akkermansia muciniphila levels in the P2, I1, and I2 groups (~20-fold, p < 0.05). Bacteroides dorei was present in all groups except the PC group. These bacteria presented a positive correlation with key SCFAs. Conclusions: The results from this study indicated that MFB supplementation modulated gut microbiota composition and enhanced SCFA production, thereby strengthening intestinal barrier integrity and reducing gut-derived inflammation. Collectively, these effects attenuated hepatic lipid accumulation and inflammation, highlighting the potential of MFB to restore gut–liver axis homeostasis disrupted by CAF-induced dysbiosis in adolescent rats.

​Background/Objectives: The study investigated the potential of mixed fruits and berries (MFB) as a dietary intervention to mitigate cafeteria (CAF) diet-induced gut microbiome dysbiosis and hepatic dysfunction associated with metabolic syndrome and steatohepatitis (MASH) in an adolescent rat model. Methods: Forty-eight adolescent male Sprague-Dawley rats (n = 3 cages per group (two rats per cage)) were divided into eight experimental groups, where NC received the normal AIN-93G basal diet, PC received the CAF diet and normal AIN-93G basal diet, T1 and T2 received MFB supplementation (3% and 6% levels) without CAF exposure, P1 and P2 received a MFB (3% and 6% levels) supplementation initiated at the onset of CAF feeding, and I1 and I2 received MFB supplementation initiated 2 weeks after CAF feeding. After 6 weeks, cecal 16S rRNA, hepatic histopathology, Oil Red O staining, and metabolic dysfunction-associated steatotic liver disease (MASLD)-related biomarkers (liver enzymes, alanine aminotransferase (ALT), and aspartate aminotransferase (AST)) were analyzed. Results: AST: ALT ratio was the highest in the PC group (3.63, p < 0.05) compared to the MFB groups. Oil Red O staining showed lower hepatic lipid accumulation, and histological analysis demonstrated a marked reduction in portal inflammatory cell infiltration in MFB. Alpha diversity (Simpson Index) decreased in PC (Kruskal–Wallis, p = 0.043). CAF increased Lactobacillus johnsonii (+75%, p < 0.05), while reducing L. murinus and L. intestinalis (~90%, p < 0.05). MFB supplementation restored Bifidobacterium Pseudolongum and increased Akkermansia muciniphila levels in the P2, I1, and I2 groups (~20-fold, p < 0.05). Bacteroides dorei was present in all groups except the PC group. These bacteria presented a positive correlation with key SCFAs. Conclusions: The results from this study indicated that MFB supplementation modulated gut microbiota composition and enhanced SCFA production, thereby strengthening intestinal barrier integrity and reducing gut-derived inflammation. Collectively, these effects attenuated hepatic lipid accumulation and inflammation, highlighting the potential of MFB to restore gut–liver axis homeostasis disrupted by CAF-induced dysbiosis in adolescent rats. Read More

Full text for top nursing and allied health literature.

X