Nutrients, Vol. 18, Pages 520: Xanthohumol: Mechanistic Actions and Emerging Evidence as a Multi-Target Natural Nutraceutical
Nutrients doi: 10.3390/nu18030520
Authors:
Mackenzie Azuero
Camilla F. Wenceslau
Wenbin Tan
Background: Xanthohumol (XN), a prenylated chalcone flavonoid derived from hops (Humulus lupulus), is increasingly recognized as a highly pleiotropic natural compound. Objective: We aimed to structure XN’s mechanistic hierarchy with emerging translational relevance across disease areas. Methods: We performed a comprehensive and integrative literature review of XN for its biological and translational effects across cancer, metabolic, neurological, cardiovascular, hepatic, renal, and dermatological disorders. Results: Mechanistically, XN exerts diverse bioactivities by inhibiting major pro-oncogenic and pro-inflammatory pathways, such as NF-κB, PI3K/Akt/mTOR, STAT3, HIF-1α, and selective MAPK cascades, while activating cytoprotective signaling, such as the Nrf2/ARE and AMPK pathways. Through these coordinated actions, XN modulates redox homeostasis, mitochondrial integrity, apoptosis, autophagy, ferroptosis, and inflammatory responses. In oncology, XN demonstrates broad-spectrum anticancer activity in preclinical models by inhibiting proliferation; inducing cell cycle arrest and apoptosis; suppressing epithelial–mesenchymal transition, angiogenesis, and metastasis; and restoring chemosensitivity in resistant cancers, including breast, lung, gastric, liver, and head-and-neck carcinomas. Beyond cancer, XN exhibits multi-organ protective bioactivities through antioxidative, antimicrobial, antiviral, and anti-inflammatory activities; inhibition of ferroptosis and excitotoxicity; and preservation of mitochondrial integrity. It shows beneficial effects in preclinical models of Parkinson’s disease, Alzheimer’s disease, hepatic steatosis and fibrosis, renal ischemia–reperfusion injury, cardiovascular dysfunction, skin photoaging, and atopic dermatitis. Human subject studies demonstrate that XN is safe and well tolerated, with observed reductions in oxidative DNA damage and inflammatory cytokine release. Recent advances in micellar formulations have improved XN’s systemic bioavailability and thus its translational feasibility. Conclusions: In summary, XN is a safe, multifunctional natural compound with strong potential for modulating disease-relevant biological pathways associated with cancer, neurodegenerative diseases, metabolic disorders, and inflammatory skin conditions. Continued efforts to enhance its bioavailability and conduct rigorous clinical trials are essential to fully establish its clinical relevance in patient populations.
Background: Xanthohumol (XN), a prenylated chalcone flavonoid derived from hops (Humulus lupulus), is increasingly recognized as a highly pleiotropic natural compound. Objective: We aimed to structure XN’s mechanistic hierarchy with emerging translational relevance across disease areas. Methods: We performed a comprehensive and integrative literature review of XN for its biological and translational effects across cancer, metabolic, neurological, cardiovascular, hepatic, renal, and dermatological disorders. Results: Mechanistically, XN exerts diverse bioactivities by inhibiting major pro-oncogenic and pro-inflammatory pathways, such as NF-κB, PI3K/Akt/mTOR, STAT3, HIF-1α, and selective MAPK cascades, while activating cytoprotective signaling, such as the Nrf2/ARE and AMPK pathways. Through these coordinated actions, XN modulates redox homeostasis, mitochondrial integrity, apoptosis, autophagy, ferroptosis, and inflammatory responses. In oncology, XN demonstrates broad-spectrum anticancer activity in preclinical models by inhibiting proliferation; inducing cell cycle arrest and apoptosis; suppressing epithelial–mesenchymal transition, angiogenesis, and metastasis; and restoring chemosensitivity in resistant cancers, including breast, lung, gastric, liver, and head-and-neck carcinomas. Beyond cancer, XN exhibits multi-organ protective bioactivities through antioxidative, antimicrobial, antiviral, and anti-inflammatory activities; inhibition of ferroptosis and excitotoxicity; and preservation of mitochondrial integrity. It shows beneficial effects in preclinical models of Parkinson’s disease, Alzheimer’s disease, hepatic steatosis and fibrosis, renal ischemia–reperfusion injury, cardiovascular dysfunction, skin photoaging, and atopic dermatitis. Human subject studies demonstrate that XN is safe and well tolerated, with observed reductions in oxidative DNA damage and inflammatory cytokine release. Recent advances in micellar formulations have improved XN’s systemic bioavailability and thus its translational feasibility. Conclusions: In summary, XN is a safe, multifunctional natural compound with strong potential for modulating disease-relevant biological pathways associated with cancer, neurodegenerative diseases, metabolic disorders, and inflammatory skin conditions. Continued efforts to enhance its bioavailability and conduct rigorous clinical trials are essential to fully establish its clinical relevance in patient populations. Read More
