Nutrients, Vol. 18, Pages 531: GLP-1RA Liraglutide Attenuates Sepsis by Modulating Gut Microbiota and Associated Metabolites

Nutrients, Vol. 18, Pages 531: GLP-1RA Liraglutide Attenuates Sepsis by Modulating Gut Microbiota and Associated Metabolites

Nutrients doi: 10.3390/nu18030531

Authors:
Bing Gong
Zhuang’e Shi
Jialong Qi
Fuping Wang
Guobing Chen
Heng Su

Background: Sepsis-induced organ dysfunction poses a significant clinical challenge with limited therapeutic options. This study investigated the therapeutic potential of the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide in sepsis and its underlying mechanisms, focusing on modulation of the gut microbiota-derived metabolome. Methods: Public transcriptomic data analysis identified overlapping targets between liraglutide and sepsis-related genes. In a murine cecal ligation and puncture (CLP) model, liraglutide treatment was evaluated for its effects on survival, systemic inflammation, and organ injury. The gut microbiota composition and fecal metabolome were assessed via 16S rRNA sequencing and UPLC-MS. We also measured plasma GLP-1 in sepsis patients and examined the microbiota-dependency of liraglutide’s effects using antibiotic-depleted mice and fecal microbiota transplantation (FMT) from liraglutide-treated mice. Additionally, citrulline, a key identified metabolite, was functionally validated both in vitro and in a clinical cohort. Results: Liraglutide significantly improved survival, reduced pro-inflammatory cytokines, and alleviated lung, liver, and colon damage in septic mice. It partially restored sepsis-induced gut dysbiosis and modulating associated metabolites, including increasing citrulline. The survival benefit of liraglutide was abolished in microbiota-depleted mice, while FMT from liraglutide-treated mice conferred protection against sepsis, confirming the gut microbiota as a critical mediator. Furthermore, citrulline exhibited direct anti-inflammatory properties in cellular assays, and its plasma levels were negatively correlated with sepsis biomarkers (PCT and CRP) in patients. Conclusions: Taken together, our findings indicate that liraglutide mitigates sepsis by modulating the gut microbiota and regulating associated metabolic pathways. Citrulline may represent a potential microbial mediator or exploratory biomarker within this axis, warranting further mechanistic investigation.

​Background: Sepsis-induced organ dysfunction poses a significant clinical challenge with limited therapeutic options. This study investigated the therapeutic potential of the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide in sepsis and its underlying mechanisms, focusing on modulation of the gut microbiota-derived metabolome. Methods: Public transcriptomic data analysis identified overlapping targets between liraglutide and sepsis-related genes. In a murine cecal ligation and puncture (CLP) model, liraglutide treatment was evaluated for its effects on survival, systemic inflammation, and organ injury. The gut microbiota composition and fecal metabolome were assessed via 16S rRNA sequencing and UPLC-MS. We also measured plasma GLP-1 in sepsis patients and examined the microbiota-dependency of liraglutide’s effects using antibiotic-depleted mice and fecal microbiota transplantation (FMT) from liraglutide-treated mice. Additionally, citrulline, a key identified metabolite, was functionally validated both in vitro and in a clinical cohort. Results: Liraglutide significantly improved survival, reduced pro-inflammatory cytokines, and alleviated lung, liver, and colon damage in septic mice. It partially restored sepsis-induced gut dysbiosis and modulating associated metabolites, including increasing citrulline. The survival benefit of liraglutide was abolished in microbiota-depleted mice, while FMT from liraglutide-treated mice conferred protection against sepsis, confirming the gut microbiota as a critical mediator. Furthermore, citrulline exhibited direct anti-inflammatory properties in cellular assays, and its plasma levels were negatively correlated with sepsis biomarkers (PCT and CRP) in patients. Conclusions: Taken together, our findings indicate that liraglutide mitigates sepsis by modulating the gut microbiota and regulating associated metabolic pathways. Citrulline may represent a potential microbial mediator or exploratory biomarker within this axis, warranting further mechanistic investigation. Read More

Full text for top nursing and allied health literature.

X