Nutrients, Vol. 17, Pages 2295: Delayed Bone Age and Osteoprotegerin Levels in Pediatric Celiac Disease: A Three-Year Case–Control Study

Nutrients, Vol. 17, Pages 2295: Delayed Bone Age and Osteoprotegerin Levels in Pediatric Celiac Disease: A Three-Year Case–Control Study

Nutrients doi: 10.3390/nu17142295

Authors:
Ruzha Pancheva
Yoana Dyankova
Niya Rasheva
Krassimira Koleva
Violeta Iotova
Mariya Dzhogova
Marco Fiore
Miglena Georgieva

Introduction: Celiac disease (CD) impairs bone development in children through inflammation and nutrient malabsorption. Osteoprotegerin (OPG), a decoy receptor for RANKL, plays a role in bone remodeling and is increasingly recognized as a potential biomarker of bone metabolism and inflammation. However, its clinical significance in pediatric CD remains unclear. Aim: To evaluate the relationship between OPG levels, growth parameters, and delayed bone age in children with CD, and to assess OPG’s potential as a biomarker of bone health and disease activity. Methods: This three-year case–control study included 146 children: 25 with newly diagnosed CD (Group A), 54 with established CD on a gluten-free diet (Group B), and 67 healthy controls (Group C). Participants underwent clinical, anthropometric, and laboratory assessments at baseline and after 6 months (Groups A and B). OPG and osteocalcin were measured, and bone age was assessed radiologically. Statistical analyses included ANOVA, Spearman’s correlations, and binomial logistic regression. Results: OPG levels were highest in newly diagnosed children (Group A), showing a non-significant decrease after gluten-free diet initiation. OPG correlated negatively with age and height in CD patients and controls, and positively with hemoglobin and iron in Group B. Logistic regression revealed no significant predictive value of OPG for delayed bone age, although a trend was observed in Group B (p = 0.091). Children in long-term remission exhibited bone maturation patterns similar to healthy peers. Conclusions: OPG levels reflect disease activity and growth delay in pediatric CD but lack predictive power for delayed bone age. While OPG may serve as a secondary marker of bone turnover and inflammatory status, it is not suitable as a standalone biomarker for skeletal maturation. These findings highlight the need for integrative biomarker panels to guide bone health monitoring in children with CD.

​Introduction: Celiac disease (CD) impairs bone development in children through inflammation and nutrient malabsorption. Osteoprotegerin (OPG), a decoy receptor for RANKL, plays a role in bone remodeling and is increasingly recognized as a potential biomarker of bone metabolism and inflammation. However, its clinical significance in pediatric CD remains unclear. Aim: To evaluate the relationship between OPG levels, growth parameters, and delayed bone age in children with CD, and to assess OPG’s potential as a biomarker of bone health and disease activity. Methods: This three-year case–control study included 146 children: 25 with newly diagnosed CD (Group A), 54 with established CD on a gluten-free diet (Group B), and 67 healthy controls (Group C). Participants underwent clinical, anthropometric, and laboratory assessments at baseline and after 6 months (Groups A and B). OPG and osteocalcin were measured, and bone age was assessed radiologically. Statistical analyses included ANOVA, Spearman’s correlations, and binomial logistic regression. Results: OPG levels were highest in newly diagnosed children (Group A), showing a non-significant decrease after gluten-free diet initiation. OPG correlated negatively with age and height in CD patients and controls, and positively with hemoglobin and iron in Group B. Logistic regression revealed no significant predictive value of OPG for delayed bone age, although a trend was observed in Group B (p = 0.091). Children in long-term remission exhibited bone maturation patterns similar to healthy peers. Conclusions: OPG levels reflect disease activity and growth delay in pediatric CD but lack predictive power for delayed bone age. While OPG may serve as a secondary marker of bone turnover and inflammatory status, it is not suitable as a standalone biomarker for skeletal maturation. These findings highlight the need for integrative biomarker panels to guide bone health monitoring in children with CD. Read More

Full text for top nursing and allied health literature.

X