Nutrients, Vol. 17, Pages 724: Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats

Nutrients, Vol. 17, Pages 724: Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats

Nutrients doi: 10.3390/nu17040724

Authors:
Peng Zang
Pu Chen
Junli Chen
Jingchao Sun
Haiyun Lan
Haisheng Dong
Wei Liu
Nan Xu
Weiran Wang
Lingwei Hou
Bowen Sun
Lujia Zhang
Jiaqiang Huang
Pengjie Wang
Fazheng Ren
Siyuan Liu

Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis.

​Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis. Read More

Full text for top nursing and allied health literature.

X