Nutrients, Vol. 17, Pages 867: Distinct Clusters of Testosterone Levels, Symptoms, and Serum Trace Elements in Young Men: A Cross-Sectional Analysis

Nutrients, Vol. 17, Pages 867: Distinct Clusters of Testosterone Levels, Symptoms, and Serum Trace Elements in Young Men: A Cross-Sectional Analysis

Nutrients doi: 10.3390/nu17050867

Authors:
Takazo Tanaka
Kosuke Kojo
Takahiro Suetomi
Yoshiyuki Nagumo
Haruhiko Midorikawa
Takaaki Matsuda
Ayumi Nakazono
Takuya Shimizu
Shunsuke Fujimoto
Atsushi Ikeda
Shuya Kandori
Hiromitsu Negoro
Tatsuya Takayama
Hiroyuki Nishiyama

Background/Objectives: Modern societal stressors have been linked to declining testosterone levels among young men, contributing to somatic, psychological, and sexual health problems. Despite growing evidence suggesting a link between trace elements and testosterone-related symptoms, there are only a few comprehensive analyses on younger populations. This study’s aim was to examine how serum trace elements modulate the relationship between testosterone levels and symptom severity. Methods: This cross-sectional study included 225 young men seeking infertility consultation in Japan. Serum total and free testosterone levels were measured, along with self-reported symptoms using the Aging Males’ Symptoms scale (somatic, psychological, sexual) and the Erection Hardness Score. The serum concentrations of 20 trace elements were measured. We used unsupervised clustering to classify participants based on testosterone levels and symptom severity and then compared the distribution of trace elements among the resulting clusters. Results: Three distinct clusters emerged: (1) lowest testosterone with highest symptom severity, (2) intermediate, and (3) highest testosterone with minimal symptoms. Interestingly, the intermediate cluster displayed low testosterone levels but minimal symptoms. Eleven trace elements (phosphorus, sulfur, potassium, calcium, iron, zinc, arsenic, rubidium, strontium, molybdenum, and cesium) were identified as potential contributors to testosterone dynamics. Weighted quantile sum regression indicated that phosphorus, strontium, and molybdenum negatively influenced testosterone outcomes, whereas iron, sulfur, and zinc were beneficial. Conclusions: Serum trace element profiles are significantly associated with testosterone levels and symptom severity in young men. Targeted interventions may address testosterone decline and its implications. These findings may help develop tailored strategies for optimizing male health.

​Background/Objectives: Modern societal stressors have been linked to declining testosterone levels among young men, contributing to somatic, psychological, and sexual health problems. Despite growing evidence suggesting a link between trace elements and testosterone-related symptoms, there are only a few comprehensive analyses on younger populations. This study’s aim was to examine how serum trace elements modulate the relationship between testosterone levels and symptom severity. Methods: This cross-sectional study included 225 young men seeking infertility consultation in Japan. Serum total and free testosterone levels were measured, along with self-reported symptoms using the Aging Males’ Symptoms scale (somatic, psychological, sexual) and the Erection Hardness Score. The serum concentrations of 20 trace elements were measured. We used unsupervised clustering to classify participants based on testosterone levels and symptom severity and then compared the distribution of trace elements among the resulting clusters. Results: Three distinct clusters emerged: (1) lowest testosterone with highest symptom severity, (2) intermediate, and (3) highest testosterone with minimal symptoms. Interestingly, the intermediate cluster displayed low testosterone levels but minimal symptoms. Eleven trace elements (phosphorus, sulfur, potassium, calcium, iron, zinc, arsenic, rubidium, strontium, molybdenum, and cesium) were identified as potential contributors to testosterone dynamics. Weighted quantile sum regression indicated that phosphorus, strontium, and molybdenum negatively influenced testosterone outcomes, whereas iron, sulfur, and zinc were beneficial. Conclusions: Serum trace element profiles are significantly associated with testosterone levels and symptom severity in young men. Targeted interventions may address testosterone decline and its implications. These findings may help develop tailored strategies for optimizing male health. Read More

Full text for top nursing and allied health literature.

X