Nutrients, Vol. 17, Pages 913: The Impact of Tartrazine on DNA Methylation, Histone Deacetylation, and Genomic Stability in Human Cell Lines
Nutrients doi: 10.3390/nu17050913
Authors:
Afshin Zand
John M. Macharia
Istvan Szabó
Gellért Gerencsér
Ádám Molnár
Bence L. Raposa
Timea Varjas
Background/Objectives: Tartrazine (TRZ), a synthetic red azo dye derived from coal tar, is widely used as a food colorant in various food products, pharmaceuticals, and cosmetics. This study aims to investigate the impact of TRZ on the expression levels of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) and histone deacetylases (HDAC5 and HDAC6). Additionally, we evaluate genomic DNA stability using the alkaline comet assay in three human cell lines: immortalized human keratinocyte (HaCaT), human hepatocellular carcinoma (HepG2), and human lung adenocarcinoma (A549). The research question focuses on whether TRZ exposure alters epigenetic regulation and DNA integrity, potentially implicating its role in carcinogenesis. Methods: The selected human cell lines were exposed to different concentrations of TRZ (20 µM, 40 µM, and 80 µM), with DMBA serving as a positive control. After treatment, we quantified the expression levels of DNMT1, DNMT3a, DNMT3b, HDAC5, and HDAC6 using quantitative real-time PCR. Additionally, we assessed DNA fragmentation via the alkaline comet assay to determine the extent of DNA damage resulting from TRZ exposure. Results: Our findings indicate that TRZ significantly upregulates the expression of HDAC5, HDAC6, DNMT1, DNMT3a, and DNMT3b in comparison to the control group. Furthermore, TRZ exposure leads to a notable increase in DNA damage, as evidenced by elevated tail moments across all examined human cell lines. Conclusions: These results suggest that TRZ may play a role in carcinogenesis and epigenetic modifications. The observed upregulation of DNMTs and HDACs, coupled with increased DNA damage, highlights the potential risks associated with TRZ exposure. Further research is necessary to explore these mechanisms and assess their implications for human health.
Background/Objectives: Tartrazine (TRZ), a synthetic red azo dye derived from coal tar, is widely used as a food colorant in various food products, pharmaceuticals, and cosmetics. This study aims to investigate the impact of TRZ on the expression levels of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) and histone deacetylases (HDAC5 and HDAC6). Additionally, we evaluate genomic DNA stability using the alkaline comet assay in three human cell lines: immortalized human keratinocyte (HaCaT), human hepatocellular carcinoma (HepG2), and human lung adenocarcinoma (A549). The research question focuses on whether TRZ exposure alters epigenetic regulation and DNA integrity, potentially implicating its role in carcinogenesis. Methods: The selected human cell lines were exposed to different concentrations of TRZ (20 µM, 40 µM, and 80 µM), with DMBA serving as a positive control. After treatment, we quantified the expression levels of DNMT1, DNMT3a, DNMT3b, HDAC5, and HDAC6 using quantitative real-time PCR. Additionally, we assessed DNA fragmentation via the alkaline comet assay to determine the extent of DNA damage resulting from TRZ exposure. Results: Our findings indicate that TRZ significantly upregulates the expression of HDAC5, HDAC6, DNMT1, DNMT3a, and DNMT3b in comparison to the control group. Furthermore, TRZ exposure leads to a notable increase in DNA damage, as evidenced by elevated tail moments across all examined human cell lines. Conclusions: These results suggest that TRZ may play a role in carcinogenesis and epigenetic modifications. The observed upregulation of DNMTs and HDACs, coupled with increased DNA damage, highlights the potential risks associated with TRZ exposure. Further research is necessary to explore these mechanisms and assess their implications for human health. Read More