Nutrients, Vol. 17, Pages 935: Italian Biodiversity: A Source of Edible Plant Extracts with Protective Effects Against Advanced Glycation End Product-Related Diseases

Nutrients, Vol. 17, Pages 935: Italian Biodiversity: A Source of Edible Plant Extracts with Protective Effects Against Advanced Glycation End Product-Related Diseases

Nutrients doi: 10.3390/nu17060935

Authors:
Giulia Moretto
Raffaella Colombo
Stefano Negri
Hellas Cena
Lorena Vailati
Adele Papetti

Background: Italy’s plant biodiversity, characterized by many plant species, is an important source of bioactive secondary metabolites that help reduce the risk of the development of advanced glycation end product (AGE)-related diseases. AGEs are involved in various diseases, such as diabetes, cardiovascular, and neurodegenerative disorders. Therefore, the aim of the study was to investigate the antiglycative, hypoglycemic, and neuroprotective properties of nine edible plant extracts using different in vitro assays. Methods: The ability of the extracts to counteract AGE formation was evaluated at different stages of the glycation reaction using in vitro systems based on the determination of Amadori products and the co-incubation of a model protein with a dicarbonyl compound under different experimental conditions. In addition, the extracts’ methylglyoxal (MGO) and glyoxal (GO) trapping ability was investigated. Hypoglycemic activity was assessed by measuring α-amylase inhibition, while the neuroprotective effects were explored by testing amyloid β peptide 1-42 (Aβ1-42) fibrillogenesis inhibition. Results: All extracts generally had a dose-related capacity for the inhibition of AGE formation, mainly at the intermediate stage of the glycation reaction; high trapping capacity against MGO and GO; and promising hypoglycemic properties. In addition, they affected the fibrillogenesis process by reducing mature amyloid fibril formation and altering fibril morphology. Conclusions: All tested extracts had promising anti-fibrillogenic properties. Rosa canina extract was the most active among the tested plant species given its antiglycative activity (about 80% inhibition of AGE formation), trapping capacity against MGO and GO (almost 100%), hypoglycemic effects (66.20 ± 0.88%), and anti-fibrillogenic effects (69.00 ± 4.49% inhibition), indicating its suitability in the management of AGE-related diseases and for the potential development of a novel food ingredient.

​Background: Italy’s plant biodiversity, characterized by many plant species, is an important source of bioactive secondary metabolites that help reduce the risk of the development of advanced glycation end product (AGE)-related diseases. AGEs are involved in various diseases, such as diabetes, cardiovascular, and neurodegenerative disorders. Therefore, the aim of the study was to investigate the antiglycative, hypoglycemic, and neuroprotective properties of nine edible plant extracts using different in vitro assays. Methods: The ability of the extracts to counteract AGE formation was evaluated at different stages of the glycation reaction using in vitro systems based on the determination of Amadori products and the co-incubation of a model protein with a dicarbonyl compound under different experimental conditions. In addition, the extracts’ methylglyoxal (MGO) and glyoxal (GO) trapping ability was investigated. Hypoglycemic activity was assessed by measuring α-amylase inhibition, while the neuroprotective effects were explored by testing amyloid β peptide 1-42 (Aβ1-42) fibrillogenesis inhibition. Results: All extracts generally had a dose-related capacity for the inhibition of AGE formation, mainly at the intermediate stage of the glycation reaction; high trapping capacity against MGO and GO; and promising hypoglycemic properties. In addition, they affected the fibrillogenesis process by reducing mature amyloid fibril formation and altering fibril morphology. Conclusions: All tested extracts had promising anti-fibrillogenic properties. Rosa canina extract was the most active among the tested plant species given its antiglycative activity (about 80% inhibition of AGE formation), trapping capacity against MGO and GO (almost 100%), hypoglycemic effects (66.20 ± 0.88%), and anti-fibrillogenic effects (69.00 ± 4.49% inhibition), indicating its suitability in the management of AGE-related diseases and for the potential development of a novel food ingredient. Read More

Full text for top nursing and allied health literature.

X